Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896405

RESUMO

Methacrylate-based polyhedral oligomeric silsesquioxane (POSS) is one of the new composites used as a dental resin. Both monofunctional methacryl isobutyl POSS (MIPOSS) and multifunctional methacryl POSS (MAPOSS) are reported to be possible resins that possess the desired properties for using them as dental resins. Our group's previous comparative study on these two resins showed that the MAPOSS composite has superior mechanical properties compared with the MIPOSS composite. In this article, molecular dynamic simulations (MD simulations) are performed to study the water sorption in these two composites. Water sorption in dental composites can have several effects on the material properties, performance, and longevity of dental restorations. Water sorption in MAPOSS and MIPOSS composites is analyzed by studying the hydrogen bonding, cluster analysis, density projection calculations, and diffusion coefficient calculation of water molecules within the resin matrix. MD simulations results are further used to understand the interaction of water molecules with the resin matrix comprehensively, which governs the composite's mechanical properties. The water sorption study showed that the MAPOSS composite has less water sorption capacity than the MIPOSS composite. The practical significance of this study is to find properties that affect dental restoration and longevity, which can help in the design of better materials for dental applications.

2.
Eur J Pharm Biopharm ; 190: 220-230, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524214

RESUMO

In this study, we used molecular simulations to design Ceritinib (CRT) co-amorphous materials (CAMs) with concurrent improvement in solubility and bioavailability. Computational modeling enabled us to select the co-former by estimating the binding energy and intermolecular interactions. Rutin (RTH) was selected as a co-former for CRT CAMs using the solvent evaporation method to anticipate simultaneous improvement of solubility and bioavailability. The solid state characterization using DSC, XRPD, FT-IR, and a significant shift in Gordon Taylor experimental Tg values of co-amorphous materials revealed single amorphous phase formation and intermolecular interactions between CRT and RTH. The co-amorphous materials exhibited physical stability for up to 4 months under dry conditions (40 °C). Further, co-amorphous materials maintained the supersaturation for 24 hrs and improved solubility as well as dissolution of CRT. CRT:RTH 1:1 CAMs improved the permeability of CRT by 2 fold, estimated by employing the everted gut sac method. The solubility advantage of CAMs was also reflected in pharmacokinetic parameters, with a 3.1-fold and 2-fold improvement of CRT:RTH 2:1 in CRT exposure (AUC 0-t) and plasma concentration (Cmax) compared to the physical mixture, respectively.


Assuntos
Rutina , Sulfonas , Disponibilidade Biológica , Espectroscopia de Infravermelho com Transformada de Fourier , Solubilidade , Estabilidade de Medicamentos , Difração de Raios X
3.
Polymers (Basel) ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679311

RESUMO

Nanocomposites of methacrylate-based polyhedral oligomeric silsesquioxane (POSS) are used as resins in dentistry to fill dental cavities. In this article, molecular dynamics simulations (MDS) are used to study and understand the interactions of monofunctional and multifunctional methacrylate groups on hybrid resins containing POSS additives for dental applications. These interactions are further related to the structural properties of the nanocomposites, which in turn affect their macro-properties that are important, especially when used for specific uses such as dental resins. For monofunctional methacrylate, nanocomposite of methacryl isobutyl POSS (MIPOSS) and for multifunctional methacrylate, methacryl POSS (MAPOSS) are used in this study. Molecular dynamic simulations (MDS) are performed on both MIPOSS and MAPOSS systems by varying the amount of POSS. On a weight percent basis, 1%, 3%, 5%, and 10% POSS are added to the resin. Density calculations, stress-strain, and powder diffraction simulations are used to evaluate the macro-properties of these nanocomposites and compare them with the experimental findings reported in the literature. The observations from the simulation results when compared to the experimental results show that MDS can be efficiently used to design, analyze, and simulate new nanocomposites of POSS.

4.
Polymers (Basel) ; 14(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566946

RESUMO

Packaging material has a significant role in maintaining or altering the shelf life of different products. Polymer materials are extensively used as packaging materials for different perishable and non-perishable products both during transportation and storage. This article aims at developing a new polymer composite which can be used as packaging material. This new composite addresses the challenge of controlling oxygen diffusion rates during the storage of perishable goods such as vegetables, meat and produce, etc. The proposed new composite primarily consists of nonacosan-10-ol and polyethylene. Molecular dynamics simulations (MDS) are performed by mixing 5.2%, 17.1%, 29.2%, 40.8% and 45.2% (wt/wt) of nonacosan-10-ol to amorphous polyethylene. Mechanical properties such as Young's modulus/glass transition temperature, and gas transport properties such as diffusion coefficient and diffusion volume are estimated from the MDS and diffusion related simulations consisting of different oxygen concentrations in polyethylene-alone system and polyethylene- nonacosan-10-ol blends. The impact of adding different weight percent of nonacosan-10-ol to polyethylene is quantitatively assessed and optimal composition of the proposed additive is suggested corresponding to minimal oxygen diffusion rate, high elastic modulus and good thermal stability.

5.
J Comput Chem ; 39(22): 1764-1778, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29888499

RESUMO

We develop novel parallel algorithms that allow molecular dynamics simulations in which byproduct molecules are created and removed because of the chemical reactions during the molecular dynamics simulation. To prevent large increases in the potential energy, we introduce the byproduct molecules smoothly by changing the non-bonded interactions gradually. To simulate complete equilibrium reactions, we allow the byproduct molecules attack and destroy created bonds. Modeling of such reactions are, for instance, important to study the pore formation due to the presence of e.g. water molecules or development of polymer morphology during the process of splitting off byproduct molecules. Another concept that could be studied is the degradation of polymeric materials, a very important topic in a recycling of polymer waste. We illustrate the method by simulating the polymerization of polyethylene terephthalate (PET) at the coarse-grained level as an example of a polycondensation reaction with water as a byproduct. The algorithms are implemented in a publicly available software package and are easily accessible using a domain-specific language that describes chemical reactions in an input configuration file. © 2018 Wiley Periodicals, Inc.

6.
Molecules ; 23(6)2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882751

RESUMO

This study was aimed at formulating a bioabsorbable, controlled-release, nanoemulgel of Quercetin, a potent antimicrobial and anti-inflammatory agent for the treatment of periodontitis that could improve its solubility and bioavailability. Screening of components was carried out based on the solubility studies. Nanoemulsion containing cinnamon oil as the oil phase, tween 80 and Carbitol® as the surfactant-cosurfactant mixture (Smix) and water as the aqueous phase containing 125 µg/200 µL of Quercetin was prepared by using spontaneous emulsification method. Nanoemulgel was prepared using 23% w/v poloxamer 407 as gel base. Comprehensive evaluation of the formulated nanoemulgel was carried out, and the optimized formulation was studied for drug release using Franz vertical diffusion cells. The formulated nanoemulgelexhibited a remarkable release of 92.4% of Quercetin at the end of 6 h, as compared to that of pure Quercetin-loaded gel (<3% release). The viscosity of the prepared nanoemulgel was found to be 30,647 ± 0.32 cPs at 37 °C. Also, molecular dynamics (MD) simulation was utilized to understand the gelation process and role of each component in the formulation. The present study revealed that the developed nanoemulgel of Quercetin could be a potential delivery system for clinical testing in periodontitis.


Assuntos
Simulação por Computador , Sistemas de Liberação de Medicamentos , Géis , Nanoestruturas , Periodontite/tratamento farmacológico , Quercetina/uso terapêutico , Difusão , Estabilidade de Medicamentos , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Quercetina/farmacocinética , Termodinâmica
7.
J Comput Chem ; 39(11): 648-664, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29214661

RESUMO

We present a comprehensive approach for reverse mapping of complex polymer systems in which the connectivity is created by the simulation of chemical reactions at the coarse-grained scale. Within the work, we use a recently developed generic adaptive reverse mapping procedure that we adapt to handle the varying connectivity structure resulting from the chemical reactions. The method is independent of the coarse-grained and fine-grained force-fields by design and relies only on a single control parameter. We employ the approach to reverse map four different systems: a three-component epoxy network, a trimethylol melamine network, a hyperbranched polymer, and a polyethylene terephthalate. In the case of the epoxy network, we use two fine-scale representations: fully atomistic and united-atom. Whereas the trimethylol melamine network the hyperbranched polymer and the polyethylene terephthalate are reverse mapped to the fully atomistic description. After the reverse mapping, we examine the fine-grained structure by comparing the radial distribution functions with respect to the control parameter. Moreover, in the case of the epoxy we perform tensile-test experiments and examine the resulting Young's modulus. In all cases, we show how the properties of the reverse mapped systems depend on the control parameters. In general, we see that the results are relatively insensitive to the control parameter and the resulting atomistic systems are stable. Only for the trimethylol melamine network, we notice chemically incorrect conformations when the reverse mapping is performed too fast. We provide a remedy for this issue. © 2017 Wiley Periodicals, Inc.

8.
J Chem Theory Comput ; 12(11): 5549-5562, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27685340

RESUMO

In this paper, we propose a new generic approach for reverse mapping from coarse-grained to atomistic scale based on the adaptive resolution scheme (AdResS). In AdResS simulation, two spatial domains, modeled at two different scales, are brought together in a concurrent simulation by defining a hybrid region where particles can switch representation from one model to another. We use AdResS as a central part of a reverse mapping algorithm from a different perspective by treating the whole simulation box as a hybrid region and changing the resolution as a function of time during the course of a molecular dynamics simulation. The proposed method depends only on a single parameter that controls the reverse mapping process and it is independent of atomistic and coarse-grained force-fields. We performed a reverse mapping of three different systems, simple molecules (dodecane), polymer chains (polyethylene) and ring molecules (trimethylol melamine) with a degree of coarse-graining ranging from two to ten heavy atoms. The conformational and dynamical properties of the reconstructed systems are in excellent agreement with the reference atomistic simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...