Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37653905

RESUMO

A prospecting campaign in the Maltese Islands has ensured the survival of several ancient olive trees (Olea europaea L.), genetically distant from known cultivars. Most of these plants were abandoned or partially cultivated. A two-year evaluation of fruit characteristics and compositions was performed on samples collected from the main representatives of these indigenous genotypes. Analyses were carried out using Gas Chromatography, High-Performance Liquid Chromatography and Near Infrared Spectrometry. Among the fruit samples, a wide range of variations was observed. Some of the genotypes showed fruit traits suitable for table olive production. This is the case of samples with a pulp/pit ratio higher than four, such as 1Wardija, 1Caritas, 1Plattini, 1Bingemma Malta and 3Loretu, whilst 1Bidni, 1Mellieha, 2Qnotta, 3Loretu, 1Bingemma Malta and 1Caritas were suitable for dual purpose. The total phenol content ranged from 6.3 (1Wardija) to 117.9 (2Mtarfa) g/kg of fresh pulp. The average percentage of MUFA was quite low for most of the varieties. These genotypes, which presumably originated in the Maltese Islands and are well adapted to the local pedo-climatic conditions, are being propagated for the following evaluation of their bio-agronomical performance (production, suitability to intensive cultivation, environmental sustainability, product quality, etc.). The purpose is to select, among these local genotypes, the most outstanding varieties, in terms of phenolic and FA profile and agronomical potential, to spread into cultivation, thereby contributing to an increase in the quality of the local table and olive oil production, strongly linked to the territory.

2.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36236259

RESUMO

Extra virgin olive oil (EVOO) is the best vegetable oil worldwide but, at the same time, is one of the product victims of fraud in the agri-food sector, and the differences about quality within the extra-virgin olive oil category are often missed. Several scientific techniques were applied in order to guarantee the authenticity and quality of this EVOO. In the present study, the volatile compounds (VOCs) by gas chromatography-mass spectrometry with solid-phase micro-extraction detection (GC-MS SPME), organoleptic analysis by the official Slow Food panel and the detection by a Small Sensor System (S3) were applied. Ten EVOOs from Umbria, a central Italian region, were selected from the 2021 Slow Food Italian extra virgin olive oil official guide, which includes hundreds of high-quality olive oils. The results demonstrated the possibility to discriminate the ten EVOOs, even if they belong to the same Italian region, by all three techniques. The result of GC-MS SPME detection was comparable at the discrimination level to the organoleptic test with few exceptions, while the S3 was able to better separate some EVOOs, which were not discriminated perfectly by the other two methods. The correlation analysis performed among and between the three methodologies allowed us to identify 388 strong associations with a p value less than 0.05. This study has highlighted how much the mix of VOCs was different even among few and localized EVOOs. The correlation with the sensor detection, which is faster and chipper compared to the other two techniques, elucidated the similarities and discrepancies between the applied methods.


Assuntos
Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Azeite de Oliva/análise , Óleos de Plantas , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
3.
Foods ; 10(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34441722

RESUMO

The extent and conditions of storage may affect the stability and quality of extra virgin olive oil (EVOO). This study aimed at evaluating the effects of different storage conditions (ambient, 4 °C and -18 °C temperatures, and argon headspace) on three EVOOs (low, medium, and high phenols) over 18 and 36 months, analyzing the main metabolites at six time points. The results showed that low temperatures are able to maintain all three EVOOs within the legal limits established by the current EU regulations for most compounds up to 36 months. Oleocanthal, squalene, and total phenols were affected by storage temperatures more than other compounds and degradation of squalene and α-tocopherol was inhibited only by low temperatures. The best temperature for 3-year conservation was 4 °C, but -18 °C represented the optimum temperature to preserve the organoleptic properties. The present study provided new insights that should guide EVOO manufacturers and traders to apply the most efficient storage methods to maintain the characteristics of the freshly extracted oils for a long conservation time.

4.
Evol Appl ; 14(4): 983-995, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33897815

RESUMO

Self-incompatibility (SI) in flowering plants potentially represents a major obstacle for sexual reproduction, especially when the number of S-alleles is low. The situation is extreme in the commercially important olive tree, where in vitro pollination assays suggested the existence of a diallelic SI (DSI) system involving only two groups (G1 and G2). Varieties belonging to the same SI group cannot fertilize each other, such that successful fruit production is predicted to require pollination between varieties of different groups. To test this prediction, we explored the extent to which the DSI system determines fertilization patterns under field conditions. One hundred and seventeen olive cultivars were first genotyped using 10 highly polymorphic dinucleotide Simple Sequence Repeat (SSR) markers to ascertain varietal identity. Cultivars were then phenotyped through controlled pollination tests to assign each of them to one of the two SI groups. We then collected and genotyped 1440 open pollinated embryos from five different orchards constituted of seven local cultivars with known group of incompatibility groups. Embryos genotype information were used: (i) to assign embryos to the most likely pollen donor genotype in the neighbourhood using paternity analysis, and (ii) to compare the composition of the pollen cloud genetic among recipient trees in the five sites. The paternity analysis showed that the DSI system is the main determinant of fertilization success under field open pollination conditions: G1 cultivars sired seeds exclusively on G2 cultivars, and reciprocally. No self-fertilization events were observed. Our results demonstrate that DSI is a potent force determining pollination success among varieties within olive orchards used for production. They have the potential to improve management practices by guiding the selection of compatible varieties to avoid planting orchards containing sets of varieties with strongly unbalanced SI groups, as these would lead to suboptimal olive production.

5.
Front Plant Sci ; 10: 1760, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117338

RESUMO

The genetic control of self-incompatibility (SI) has been recently disclosed in olive. Inter-varietal crossing confirmed the presence of only two incompatibility groups (G1 and G2), suggesting a simple Mendelian inheritance of the trait. A double digest restriction associated DNA (ddRAD) sequencing of a biparental population segregating for incompatibility groups has been performed and high-density linkage maps were constructed in order to map the SI locus and identify gene candidates and linked markers. The progeny consisted of a full-sib family of 229 individuals derived from the cross 'Leccino' (G1) × 'Dolce Agogia' (G2) varieties, segregating 1:1 (G1:G2), in accordance with a diallelic self-incompatibility (DSI) model. A total of 16,743 single nucleotide polymorphisms was identified, 7,006 in the female parent 'Leccino' and 9,737 in the male parent 'Dolce Agogia.' Each parental map consisted of 23 linkage groups and showed an unusual large size (5,680 cM in 'Leccino' and 3,538 cM in 'Dolce Agogia'). Recombination was decreased across all linkage groups in pollen mother cells of 'Dolce Agogia,' the parent with higher heterozygosity, compared to megaspore mother cells of 'Leccino,' in a context of a species that showed exceptionally high recombination rates. A subset of 109 adult plants was assigned to either incompatibility group by a stigma test and the diallelic self-incompatibility (DSI) locus was mapped to an interval of 5.4 cM on linkage group 18. This region spanned a size of approximately 300 Kb in the olive genome assembly. We developed a sequence-tagged site marker in the DSI locus and identified five haplotypes in 57 cultivars with known incompatibility group assignment. A combination of two single-nucleotide polymorphisms (SNPs) was sufficient to predict G1 or G2 phenotypes in olive cultivars, enabling early marker-assisted selection of compatible genotypes and allowing for a rapid screening of inter-compatibility among cultivars in order to guarantee effective fertilization and increase olive production. The construction of high-density linkage maps has led to the development of the first functional marker in olive and provided positional candidate genes in the SI locus.

6.
Evol Appl ; 10(9): 867-880, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29151878

RESUMO

The olive (Olea europaea L.) is a typical important perennial crop species for which the genetic determination and even functionality of self-incompatibility (SI) are still largely unresolved. It is still not known whether SI is under gametophytic or sporophytic genetic control, yet fruit production in orchards depends critically on successful ovule fertilization. We studied the genetic determination of SI in olive in light of recent discoveries in other genera of the Oleaceae family. Using intra- and interspecific stigma tests on 89 genotypes representative of species-wide olive diversity and the compatibility/incompatibility reactions of progeny plants from controlled crosses, we confirmed that O. europaea shares the same homomorphic diallelic self-incompatibility (DSI) system as the one recently identified in Phillyrea angustifolia and Fraxinus ornus. SI is sporophytic in olive. The incompatibility response differs between the two SI groups in terms of how far pollen tubes grow before growth is arrested within stigma tissues. As a consequence of this DSI system, the chance of cross-incompatibility between pairs of varieties in an orchard is high (50%) and fruit production may be limited by the availability of compatible pollen. The discovery of the DSI system in O. europaea will undoubtedly offer opportunities to optimize fruit production.

7.
Front Plant Sci ; 8: 1283, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769972

RESUMO

Germplasm collections of tree crop species represent fundamental tools for conservation of diversity and key steps for its characterization and evaluation. For the olive tree, several collections were created all over the world, but only few of them have been fully characterized and molecularly identified. The olive collection of Perugia University (UNIPG), established in the years' 60, represents one of the first attempts to gather and safeguard olive diversity, keeping together cultivars from different countries. In the present study, a set of 370 olive trees previously uncharacterized was screened with 10 standard simple sequence repeats (SSRs) and nine new EST-SSR markers, to correctly and thoroughly identify all genotypes, verify their representativeness of the entire cultivated olive variation, and validate the effectiveness of new markers in comparison to standard genotyping tools. The SSR analysis revealed the presence of 59 genotypes, corresponding to 72 well known cultivars, 13 of them resulting exclusively present in this collection. The new EST-SSRs have shown values of diversity parameters quite similar to those of best standard SSRs. When compared to hundreds of Mediterranean cultivars, the UNIPG olive accessions were splitted into the three main populations (East, Center and West Mediterranean), confirming that the collection has a good representativeness of the entire olive variability. Furthermore, Bayesian analysis, performed on the 59 genotypes of the collection by the use of both sets of markers, have demonstrated their splitting into four clusters, with a well balanced membership obtained by EST respect to standard SSRs. The new OLEST (Olea expressed sequence tags) SSR markers resulted as effective as the best standard markers. The information obtained from this study represents a high valuable tool for ex situ conservation and management of olive genetic resources, useful to build a common database from worldwide olive cultivar collections, also based on recently developed markers.

8.
Ann Bot ; 119(8): 1305-1318, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28387783

RESUMO

Background and Aims: Olive is considered a native plant of the eastern side of the Mediterranean basin, from where it should have spread westward along the Mediterranean shores, while little is known about its diffusion in the eastern direction. Methods: Genetic diversity levels and population genetic structure of a wide set of olive ecotypes and varieties collected from several provinces of Iran, representing a high percentage of the entire olive resources present in the area, was screened with 49 chloroplast and ten nuclear simple sequence repeat markers, and coupled with archaeo-botanical and historical data on Mediterranean olive varieties. Approximate Bayesian Computation was applied to define the demographic history of olives including Iranian germplasm, and species distribution modelling was performed to understand the impact of the Late Quaternary on olive distribution. Key Results: The results of the present study demonstrated that: (1) the climatic conditions of the last glacial maximum had an important role on the actual olive distribution, (2) all Iranian olive samples had the same maternal inheritance as Mediterranean cultivars, and (3) the nuclear gene flow from the Mediterranean basin to the Iranian plateau was almost absent, as well as the contribution of subspecies cuspidata to the diversity of Iranian olives. Conclusions: Based on this evidence, a new scenario for the origin and distribution of this important fruit crop has been traced. The evaluation of olive trees growing in the eastern part of the Levant highlighted a new perspective on the spread and distribution of olive, suggesting two routes of olive differentiation, one westward, spreading along the Mediterranean basin, and another moving towards the east and reaching the Iranian plateau before its domestication.


Assuntos
Variação Genética , Olea/genética , Teorema de Bayes , DNA de Cloroplastos/genética , Fluxo Gênico , Padrões de Herança , Irã (Geográfico) , Repetições de Microssatélites
9.
PLoS One ; 9(4): e93146, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24709858

RESUMO

BACKGROUND: Olive trees (Olea europaea subsp. europaea var. europaea) naturally grow in areas spanning the Mediterranean basin and towards the East, including the Middle East. In the Iranian plateau, the presence of olives has been documented since very ancient times, though the early history of the crop in this area is shrouded in uncertainty. METHODS: The varieties presently cultivated in Iran and trees of an unknown cultivation status, surviving under extreme climate and soil conditions, were sampled from different provinces and compared with a set of Mediterranean cultivars. All samples were analyzed using SSR and chloroplast markers to establish the relationships between Iranian olives and Mediterranean varieties, to shed light on the origins of Iranian olives and to verify their contribution to the development of the current global olive variation. RESULTS: Iranian cultivars and ecotypes, when analyzed using SSR markers, clustered separately from Mediterranean cultivars and showed a high number of private alleles, on the contrary, they shared the same single chlorotype with the most widespread varieties cultivated in the Mediterranean. CONCLUSION: We hypothesized that Iranian and Mediterranean olive trees may have had a common origin from a unique center in the Near East region, possibly including the western Iranian area. The present pattern of variation may have derived from different environmental conditions, distinct levels and selection criteria, and divergent breeding opportunities found by Mediterranean and Iranian olives.These unexpected findings emphasize the importance of studying the Iranian olive germplasm as a promising but endangered source of variation.


Assuntos
Alelos , Cloroplastos/genética , Ecossistema , Variação Genética , Olea/genética , Marcadores Genéticos , Irã (Geográfico) , Mar Mediterrâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...