Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 12: 586569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815459

RESUMO

Humanity has seen numerous pandemics during its course of evolution. The list includes several incidents from the past, such as measles, Ebola, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS), etc. The latest edition to this is coronavirus disease 2019 (COVID-19), caused by the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of August 18, 2020, COVID-19 has affected over 21 million people from 180 + countries with 0.7 million deaths across the globe. Genomic technologies have enabled us to understand the genomic constitution of pathogens, their virulence, evolution, and rate of mutation, etc. To date, more than 83,000 viral genomes have been deposited in public repositories, such as GISAID and NCBI. While we are writing this, India is the third most affected country by COVID-19, with 2.7 million cases and > 53,000 deaths. Gujarat is the 11th highest affected state with a 3.48% death rate compared to the national average of 1.91%. In this study, a total of 502 SARS-CoV-2 genomes from Gujarat were sequenced and analyzed to understand its phylogenetic distribution and variants against global and national sequences. Further variants were analyzed from diseased and recovered patients from Gujarat and the world to understand its role in pathogenesis. Among the missense mutations present in the Gujarat SARS-CoV-2 genomes, C28854T (Ser194Leu) had an allele frequency of 47.62 and 7.25% in deceased patients from the Gujarat and global datasets, respectively. In contrast, the allele frequency of 35.16 and 3.20% was observed in recovered patients from the Gujarat and global datasets, respectively. It is a deleterious mutation present in the nucleocapsid (N) gene and is significantly associated with mortality in Gujarat patients with a p-value of 0.067 and in the global dataset with a p-value of 0.000924. The other deleterious variant identified in deceased patients from Gujarat (p-value of 0.355) and the world (p-value of 2.43E-06) is G25563T, which is located in Orf3a and plays a potential role in viral pathogenesis. SARS-CoV-2 genomes from Gujarat are forming distinct clusters under the GH clade of GISAID. This study will shed light on the viral haplotype in SARS-CoV-2 samples from Gujarat, India.

2.
J Environ Manage ; 289: 112448, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33831764

RESUMO

Identifying the microbial community and their functional potential from different stages of common effluent treatment plants (CETP) can enhance the efficiency of wastewater treatment systems. In this study, wastewater metagenomes from 8 stages of CETP were screened for microbial diversity and gene profiling along with their corresponding degradation activities. The microbial community displayed 98.46% of bacterial species, followed by Eukarya (0.10%) and Archaea 0.02%. At the Phylum level, Proteobacteria (28.8%) was dominant, followed by Bacteroidetes (16.1%), Firmicutes (11.7%), and Fusobacteria (6.9%) which are mainly capable of degrading the aromatic compounds. Klebsiella pneumoniae, Wolinella succinogenes, Pseudomonas stutzeri, Desulfovibrio vulgaris, and Clostridium sticklandii were the most prevalent species. The functional analysis further demonstrated the presence of enzymes linked with genes/pathways known to be involved in the degradation/metabolization of aromatic compounds like benzoate, bisphenol, 1,2-dichloroethane phenylalanine. This information was further validated with the whole genome analysis of the bacteria isolated from the CETP. We anticipate that integrating both shotgun and whole-genome analyses can reveal the rich reservoir for novel enzymes and genes present in CETP effluent that can contribute to designing efficient bioremediation strategies for the environment in general CETP system, in particular.


Assuntos
Metagenômica , Microbiota , Bactérias/genética , Metagenoma , Águas Residuárias
3.
Sci Total Environ ; 779: 146184, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33752005

RESUMO

Globally, environmental pollution by plastic waste has become a severe ecological and social problem worldwide. The present study aimed to analyse the bacterial community structure and functional potential of the landfill site using high throughput shotgun metagenomic approach to understand plastic degrading capabilities present in the municipal solid waste (MSW) dumping site. In this study, soil, leachate and compost samples were collected from various locations (height and depth) of the Pirana landfill site in Ahmedabad city Gujarat, India. In total 30 phyla, 58 class, 125 order, 278 families, 793 genera, and 2468 species were predicted. The most dominant phyla detected were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria in the soil and compost samples. Whereas, in leachate samples, the predominant phyla belonged to Firmicutes (54.24%) followed by Actinobacteria (43.67%) and Proteobacteria (1.02%). The functional profiling revealed the presence of enzymatic groups and pathways involved in biodegradation of xenobiotics. The results also demonstrated the presence of potential genes that is associated with the biodegradation of different types of plastics such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS). Present study extablishes the relationship between microbial community structure and rich sources of gene pool, which are actively involved in biodegradation of plastic waste in landfill sites.


Assuntos
Microbiota , Eliminação de Resíduos , Poluentes Químicos da Água , Índia , Plásticos , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...