Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(32): e2303949, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740421

RESUMO

Skin-like flexible sensors play vital roles in healthcare and human-machine interactions. However, general goals focus on pursuing intrinsic static and dynamic performance of skin-like sensors themselves accompanied with diverse trial-and-error attempts. Such a forward strategy almost isolates the design of sensors from resulting applications. Here, a machine learning (ML)-guided design of flexible tactile sensor system is reported, enabling a high classification accuracy (≈99.58%) of tactile perception in six dynamic touch modalities. Different from the intuition-driven sensor design, such ML-guided performance optimization is realized by introducing a support vector machine-based ML algorithm along with specific statistical criteria for fabrication parameters selection to excavate features deeply concealed in raw sensing data. This inverse design merges the statistical learning criteria into the design phase of sensing hardware, bridging the gap between the device structures and algorithms. Using the optimized tactile sensor, the high-quality recognizable signals in handwriting applications are obtained. Besides, with the additional data processing, a robot hand assembled with the sensor is able to complete real-time touch-decoding of an 11-digit braille phone number with high accuracy.


Assuntos
Percepção do Tato , Tato , Humanos , Pele , Aprendizado de Máquina
2.
IEEE Trans Med Robot Bionics ; 4(1): 106-117, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35582700

RESUMO

Driven by the demand to largely mitigate nosocomial infection problems in combating the coronavirus disease 2019 (COVID-19) pandemic, the trend of developing technologies for teleoperation of medical assistive robots is emerging. However, traditional teleoperation of robots requires professional training and sophisticated manipulation, imposing a burden on healthcare workers, taking a long time to deploy, and conflicting the urgent demand for a timely and effective response to the pandemic. This paper presents a novel motion synchronization method enabled by the hybrid mapping technique of hand gesture and upper-limb motion (GuLiM). It tackles a limitation that the existing motion mapping scheme has to be customized according to the kinematic configuration of operators. The operator awakes the robot from any initial pose state without extra calibration procedure, thereby reducing operational complexity and relieving unnecessary pre-training, making it user-friendly for healthcare workers to master teleoperation skills. Experimenting with robotic grasping tasks verifies the outperformance of the proposed GuLiM method compared with the traditional direct mapping method. Moreover, a field investigation of GuLiM illustrates its potential for the teleoperation of medical assistive robots in the isolation ward as the Second Body of healthcare workers for telehealthcare, avoiding exposure of healthcare workers to the COVID-19.

3.
IEEE J Biomed Health Inform ; 25(12): 4276-4288, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34018941

RESUMO

With the fourth revolution of healthcare, i.e., Healthcare 4.0, collaborative robotics is spilling out from traditional manufacturing and will blend into human living or working environments to deliver care services, especially telehealthcare. Because of the frequent and seamless interaction between robots and care recipients, it poses several challenges that require careful consideration: 1) the ability of the human to collaborate with the robots in a natural manner; and 2) the safety of the human collaborating with the robot. In this regard, we have proposed a proximity sensing solution based on the self-capacitive technology to provide an extended sense of touch for collaborative robots, allowing approach and contact measurement to enhance safe and natural human-robot collaboration. The modular design of our solution enables it to scale up to form a large-area sensing system. The sensing solution is proposed to work in two operation modes: the interaction mode and the safety mode. In the interaction mode, utilizing the ability of the sensor to localize the point of action, gesture command is used for robot manipulation. In the safety mode, the sensor enables the robot to actively avoid obstacles.


Assuntos
Robótica , Humanos , Pele , Tato , Local de Trabalho
4.
Sensors (Basel) ; 19(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783618

RESUMO

Gait analysis is an important assessment tool for analyzing vital signals collected from individuals and for providing physical information of the human body, and it is emerging in a diverse range of application scenarios, such as disease diagnosis, fall prevention, rehabilitation, and human-robot interaction. Herein, a kind of surface processed conductive rubber was designed and investigated to develop a pressure-sensitive insole to monitor planar pressure in a real-time manner. Due to a novel surface processing method, the pressure sensor was characterized by stable contact resistance, simple manufacturing, and high mechanical durability. In the experiments, it was demonstrated that the developed pressure sensors were easily assembled with the inkjet-printed electrodes and a flexible substrate as a pressure-sensitive insole while maintaining good sensing performance. Moreover, resistive signals were wirelessly transmitted to computers in real time. By analyzing sampled resistive data combined with the gait information monitored by a visual-based reference system based on machine learning method (k-Nearest Neighbor algorithm), the corresponding relationship between plantar pressure distribution and lower limb joint angles was obtained. Finally, the experimental validation of the ability to accurately divide gait into several phases was conducted, illustrating the potential application of the developed device in healthcare and robotics.

5.
IEEE Rev Biomed Eng ; 12: 34-71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30571646

RESUMO

Advances in flexible and stretchable electronics, functional nanomaterials, and micro/nano manufacturing have been made in recent years. These advances have accelerated the development of wearable sensors. Wearable sensors, with excellent flexibility, stretchability, durability, and sensitivity, have attractive application prospects in the next generation of personal devices for chronic disease care. Flexible and stretchable wearable sensors play an important role in endowing chronic disease care systems with the capability of long-term and real-time tracking of biomedical signals. These signals are closely associated with human body chronic conditions, such as heart rate, wrist/neck pulse, blood pressure, body temperature, and biofluids information. Monitoring these signals with wearable sensors provides a convenient and non-invasive way for chronic disease diagnoses and health monitoring. In this review, the applications of wearable sensors in chronic disease care are introduced. In addition, this review exploits a comprehensive investigation of requirements for flexibility and stretchability, and methods of nano-based enhancement. Furthermore, recent progress in wearable sensors-including pressure, strain, electrophysiological, electrochemical, temperature, and multifunctional sensors-is presented. Finally, opening research challenges and future directions of flexible and stretchable sensors are discussed.


Assuntos
Doença Crônica/terapia , Assistência de Longa Duração/tendências , Nanoestruturas/uso terapêutico , Dispositivos Eletrônicos Vestíveis/tendências , Doença Crônica/epidemiologia , Terapia por Exercício , Frequência Cardíaca/fisiologia , Humanos
6.
Micromachines (Basel) ; 9(11)2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400665

RESUMO

For industrial manufacturing, industrial robots are required to work together with human counterparts on certain special occasions, where human workers share their skills with robots. Intuitive human⁻robot interaction brings increasing safety challenges, which can be properly addressed by using sensor-based active control technology. In this article, we designed and fabricated a three-dimensional flexible robot skin made by the piezoresistive nanocomposite based on the need for enhancement of the security performance of the collaborative robot. The robot skin endowed the YuMi robot with a tactile perception like human skin. The developed sensing unit in the robot skin showed the one-to-one correspondence between force input and resistance output (percentage change in impedance) in the range of 0⁻6.5 N. Furthermore, the calibration result indicated that the developed sensing unit is capable of offering a maximum force sensitivity (percentage change in impedance per Newton force) of 18.83% N-1 when loaded with an external force of 6.5 N. The fabricated sensing unit showed good reproducibility after loading with cyclic force (0⁻5.5 N) under a frequency of 0.65 Hz for 3500 cycles. In addition, to suppress the bypass crosstalk in robot skin, we designed a readout circuit for sampling tactile data. Moreover, experiments were conducted to estimate the contact/collision force between the object and the robot in a real-time manner. The experiment results showed that the implemented robot skin can provide an efficient approach for natural and secure human⁻robot interaction.

7.
IEEE J Transl Eng Health Med ; 6: 2100510, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29805919

RESUMO

Surface electromyography signal plays an important role in hand function recovery training. In this paper, an IoT-enabled stroke rehabilitation system was introduced which was based on a smart wearable armband (SWA), machine learning (ML) algorithms, and a 3-D printed dexterous robot hand. User comfort is one of the key issues which should be addressed for wearable devices. The SWA was developed by integrating a low-power and tiny-sized IoT sensing device with textile electrodes, which can measure, pre-process, and wirelessly transmit bio-potential signals. By evenly distributing surface electrodes over user's forearm, drawbacks of classification accuracy poor performance can be mitigated. A new method was put forward to find the optimal feature set. ML algorithms were leveraged to analyze and discriminate features of different hand movements, and their performances were appraised by classification complexity estimating algorithms and principal components analysis. According to the verification results, all nine gestures can be successfully identified with an average accuracy up to 96.20%. In addition, a 3-D printed five-finger robot hand was implemented for hand rehabilitation training purpose. Correspondingly, user's hand movement intentions were extracted and converted into a series of commands which were used to drive motors assembled inside the dexterous robot hand. As a result, the dexterous robot hand can mimic the user's gesture in a real-time manner, which shows the proposed system can be used as a training tool to facilitate rehabilitation process for the patients after stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...