Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1283-1292, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886427

RESUMO

To investigate the effects of different irrigation and nitrogen application modes on nitrogen gaseous loss in winter wheat farmland, we conducted a field experiment at Changqing Irrigation Experiment Station in Shandong Province, with two irrigation levels (80%-90% θf(I1) and 70%-80% θf(I2)) and three nitrogen application levels (conventional nitrogen application of 240 kg·hm-2(N1), nitrogen reduction of 12.5% (N2), and nitrogen reduction of 25% (N3)). The results showed that ammonia volatilization and nitrous oxide emission rate peak appeared within 2-4 days after fertilization or irrigation. The ammonia volatilization rate during the chasing fertilizer period was significantly higher than that during the basal fertilizer period. Compared with other treatments, the ave-rage ammonia volatilization rate of I2N2 treatment during the chasing fertilizer period was reduced by 10.1%-51.6%, and the average nitrous oxide emission rate over the whole growth period was reduced by 15.4%-52.2%. The ammonia volatilization rate was significantly positively associated with surface soil pH value and ammonium nitrogen content, while the nitrous oxide emission rate was significantly positively associated with nitrate content in topsoil. The accumulation amount of soil ammonia volatilization and nitrous oxide emission ranged from 0.83-1.42 and 0.11-0.33 kg·hm-2, respectively. Moderate reduction of irrigation water and nitrogen input could effectively reduce cumulative amounts of ammonia volatilization and nitrous oxide emission from winter wheat farmland. The cumulative amounts of ammonia volatilization and nitrous oxide emission under I1N3 and I2N2 treatments were signi-ficantly lower than those under other treatments. The highest winter wheat yield (5615.6 kg·hm-2) appeared in I2N2 treatment. The irrigation water utilization efficiency of I2 was significantly higher than that of I1, with the maximum increase rate of 45.2%. Compared with N1 and N3 treatments, the maximum increase rate of nitrogen fertilizer productivity and agricultural utilization efficiency in N2 reached 15.2% and 31.8%, respectively. In conclusion, the treatment with 70%-80% θf irrigation level and 210 kg·hm-2 nitrogen input could effectively improve the utilization efficiency of irrigation water and nitrogen fertilization and reduce gaseous loss from winter wheat farmland.


Assuntos
Amônia , Fertilizantes , Nitrogênio , Óxido Nitroso , Triticum , Água , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Amônia/análise , Amônia/metabolismo , China , Água/análise , Água/metabolismo , Irrigação Agrícola/métodos , Estações do Ano , Biomassa , Solo/química
2.
Biomater Sci ; 12(3): 776-789, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38167881

RESUMO

Immunosuppressive tumor microenvironments challenge the effectiveness of protein-based biopharmaceuticals in cancer immunotherapy. Reestablishing tumor cell immunogenicity by enhancing calreticulin (CRT) exposure is expected to improve tumor immunotherapy. Given that CRT translocation is inherently modulated by phosphorylated eIF2α, the selective inhibition of protein phosphatase 1 (PP1) emerges as an effective strategy to augment tumor immunogenicity. To harness the PP1-disrupting potential of GADD34-derived motifs and address their limited intracellular delivery, we integrated these sequences into an enzyme-triggered, cell-penetrating peptide-mediated chimeric protein scaffold. This design not only facilitates efficient cytoplasmic delivery of these immunostimulatory motifs to induce "eat-me" signaling, but also provides a versatile platform for combination immunotherapy. Fabrication of biomodulators with cytotoxic BLF1 provides additional "eat-me" signaling through phosphatidylserine exposure or that with an immunomodulatory designed ankyrin repeat protein disables "don't-find-me" signaling by antagonizing PD-L1. Notably, these bifunctional biomodulators exhibit remarkable ability to induce macrophage phagocytosis, dendritic cell maturation, and CD8+ T activation, ultimately substantially inhibiting tumor growth. This study presents a modular genetic coding strategy for PP1-centered therapies that enables seamless integration of immunostimulatory sequences into protein-based anti-tumor cocktail therapies, thereby offering novel alternatives for improving antitumor efficacy.


Assuntos
Antineoplásicos , Peptídeos Penetradores de Células , Neoplasias , Humanos , Imunoterapia , Antineoplásicos/farmacologia , Neoplasias/patologia , Fatores Imunológicos , Microambiente Tumoral , Linhagem Celular Tumoral
3.
J Mater Chem B ; 11(48): 11562-11577, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37982298

RESUMO

To address the challenges posed by low immunogenicity and immune checkpoints during cancer treatment, we propose an alternative strategy that combines immunogenic cell death (ICD) effects with CD47/SIRPα blockade to reactivate phagocytosis of tumor cells by macrophages with polysaccharide-based drug delivery. In this study, the EGFR inhibitor gefitinib was identified as a novel CD47 modulator, which promoted the translocation of CD47 molecules from the cell membrane to endosomes through the EGFR-Rab5 pathway, leading to reduced cell surface CD47 levels and limiting interaction with SIRPα. Based on this finding, we developed prophagocytic mixed nanodrugs to enhance macrophage phagocytosis by encapsulating ICD inducer doxorubicin and CD47 inhibitor gefitinib with immunostimulatory polysaccharides from Ganoderma lucidum. This approach downregulated cell surface CD47 expression to attenuate "don't-eat-me" signaling, while increasing doxorubicin accumulation in tumors by inhibiting drug-resistance proteins, leading to more exposure of calreticulin and amplifying the "eat-me" signaling. In vivo experiments demonstrated that this approach significantly suppressed intraperitoneal tumor dissemination, reversed doxorubicin-induced weight loss, and effectively induced macrophage polarization, dendritic cell maturation, and CD8+ T cell activation. These findings highlighted the significant potential of our macrophage-centered therapeutic strategy using polysaccharide-based nanocarriers and provided new perspectives for chemoimmunotherapy.


Assuntos
Neoplasias , Reishi , Antígeno CD47 , Reishi/metabolismo , Gefitinibe , Antígenos de Diferenciação , Neoplasias/metabolismo , Doxorrubicina/farmacologia , Polissacarídeos/farmacologia , Receptores ErbB
4.
Artigo em Inglês | MEDLINE | ID: mdl-34374214

RESUMO

Ovalbumin (OVA) is a model antigen commonly incorporated in smartly designed nanoparticles for delivery into antigen-presenting cells (APC), aiming to investigate the immune activity and therapeutic efficacy of nanoparticles that contain immunoregulatory compounds. However, the immunoresponse observed in nano-immunotherapy may unexpectedly arise from endotoxin impurity of OVA in the nanoparticles. Literature review shows that most researchers did not notice the importance of endotoxin-free OVA when used in nano-immunotherapy studies. Concentration at as low as 5 µg/ml OVA from Sigma-Aldrich (contains 0.625 ng/ml endotoxin) was able to activate APC such as dendritic cells and macrophages. Here, we proposed that the endotoxin impurity in OVA or the finished nanoproducts should be determined by both Limulus Amebocyte Lysate (LAL) and cell-based assay, to ensure the endotoxin-free quality of the nanoparticles. The endotoxin in OVA can be removed by endotoxin removal column and phase separation methods and endotoxin-free OVA can be purchased. This perspective alerts the researchers of endotoxin impurity of OVA that may transfer into the finished nanoparticles and introduce an unfavorable immunoregulatory function with false-positive results. OVA with minimal endotoxin level should be used in nano-immunotherapy studies to accurately reflect the true effects of nanoparticles on the immune system. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Assuntos
Imunoterapia , Nanopartículas , Antígenos , Endotoxinas , Ovalbumina
5.
Nanomedicine (Lond) ; 16(17): 1487-1504, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34184559

RESUMO

Aim: To explore the hepatotoxicity of copper sulfide nanoparticles (CuSNPs) toward hepatocyte spheroids. Materials & methods: Other than the traditional agarose method to generate hepatocyte spheroids, we developed a multi-concave agarose chip (MCAC) method to investigate changes in hepatocyte viability, morphology, mitochondrial membrane potential, reactive oxygen species and hepatobiliary transporter by CuSNPs. Results: The MCAC method allowed a large number of spheroids to be obtained per sample. CuSNPs showed hepatotoxicity in vitro through a decrease in spheroid viability, albumin/urea production and glycogen deposition. CuSNPs also introduced hepatocyte spheroid injury through alteration of mitochondrial membrane potential and reactive oxygen species, that could be reversed by N-acetyl-l-cysteine. CuSNPs significantly decreased the activity of BSEP transporter by downregulating its mRNA and protein levels. Activity of the MRP2 transporter remained unchanged. Conclusion: We observed the hepatotoxicity of CuSNPs in vitro with associated mechanisms in an advanced 3D culture system.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas , Células Cultivadas , Cobre/toxicidade , Hepatócitos , Humanos , Nanopartículas/toxicidade , Sefarose , Esferoides Celulares , Sulfetos/toxicidade
6.
J Contam Hydrol ; 231: 103621, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32145430

RESUMO

The nitrogen dynamics in a subsurface infiltration system (SIS) are affected by many factors, including temperature, system design, and feed water quality, which are not easily quantified. In this study, a column experiment was conducted to simulate an SIS. The HYDRUS-1D software package was used to investigate and quantify the factors that affect nitrate transport in an SIS. Three treatments were carried out based on different hydraulic conditions, including continuous wetting (CW), wetting/drying (WD), and a specific hydraulic loading rate (SH). The effects of hydraulic conditions and temperature on nitrate transformation were investigated. The model was calibrated and validated using two-year experimental data. Simulations of cumulative outflow volume and nitrate concentration fitted well with the observations. Among the three SISs, the denitrification rate was greatest under unsaturated conditions at high water temperature. The denitrification rate constant had an exponential relationship with temperature. An empirical formula describing this relationship was developed and validated in the SIS. The results showed that the SH column attained the greatest nitrate removal efficiency, mainly due to its low hydraulic loading and long retention time. Overall, the results showed that HYDRUS-1D adequately simulated nitrate transport through the soil column under different temperature and hydraulic conditions in an SIS. The fate of nitrate was directly controlled by the water temperature and hydraulic conditions.


Assuntos
Nitrogênio/análise , Solo , Desnitrificação , Nitratos/análise , Temperatura , Água
7.
ACS Appl Mater Interfaces ; 11(45): 42661-42670, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31638366

RESUMO

Radiotherapy was considered to induce an abscopal effect initiated through antigen release and presented by dendritic cells (DC), while the immunosuppressive tumor microenvironment (TEM) attenuated the effects. Herein, we utilized bioactive polysaccharides extracted from the natural herb Astragalus membranaceus and developed polysaccharide nanoparticles (ANPs) that can reverse TEM and, accordingly, enhance the radiation-induced abscopal effect. ANP showed ability to prolong the survival rate of tumor-bearing mice. In addition, ANP dramatically inhibited the growth of the primary tumor subjected to radiation as well as the secondary tumor distant from the primary lesion. Mechanistic study demonstrated that an ANP-induced immune response was mainly reflected by DC activation, represented by phenotypic maturation and enhanced antigen presentation through the TLR4 signaling pathway. Mature DC induced by ANP migrated to the tumor-draining lymph node and initiated T-cell expansion. Specifically, DC activation was successfully translated into an increase in CD4+ T/Treg and CD8+ T/Treg ratios within both primary (irradiated) and secondary (unirradiated) tumors. Our results also indicated that the systemic antitumor immune response and immune memory were enhanced with the increase in IFN-γ production and effector memory T-cell population. Our work provided a novel strategy to facilitate the incorporation of immunoactive macromolecules purified from natural herbs into modern nanotechnology in the era of immunotherapy.


Assuntos
Astragalus propinquus/química , Células Dendríticas/imunologia , Neoplasias/radioterapia , Extratos Vegetais/administração & dosagem , Polissacarídeos/administração & dosagem , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Neoplasias/imunologia
8.
ACS Appl Mater Interfaces ; 11(31): 27536-27547, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31294958

RESUMO

Radiotherapy is a traditional method for cancer therapy but may become ineffective likely due to the radiation-induced immunosuppression. Instead of simply increasing the radiation dose, reactivation of immunosuppression in the tumor microenvironment is an alternative strategy for successful cancer treatment. In this work, we synthesized bismuth sulfide nanoparticles (BiNP) and conjugated with immunoactive Ganoderma lucidum polysaccharide (GLP). GLP-BiNP were able to increase the sensitivity of radiotherapy, attributing to the efficient X-ray absorption of bismuth element. BiNP alone can mildly activate dendritic cells (DC) in vitro, while GLP-BiNP further enhanced the level of DC maturation, shown as the increase in phenotypic maturation markers, cytokine release, acid phosphatase activity, and T cell proliferation in DC/T cell co-culture. Compared to BiNP, GLP-BiNP altered the tissue distribution with faster accumulation in the tumor. Meanwhile, mature DC greatly increased in both tumor and spleen by GLP-BiNP within 24 h. GLP-BiNP combination with radiation achieved remarkable inhibition of tumor growth through apoptosis. Alternatively, lung metastasis was largely prohibited by GLP-BiNP, shown as a reduced amount of tumor nodules and cancer cell invasion by pathological findings. Mechanistically, GLP-BiNP altered the tumor immunosuppression microenvironment by preferably increasing the number of intratumor CD8+ T cell proliferation, as well as the improved immunobalance shown as the increased serum interferon-γ/interleukin-4 ratio. Specifically, GLP conjugation seemed to protect the kidney from injury occasionally introduced by bare BiNP. As a result, GLP-BiNP play a dual role in tumor treatment through radiosensitization and immunoactivities.


Assuntos
Bismuto , Células Dendríticas/imunologia , Polissacarídeos Fúngicos , Nanopartículas , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/radioterapia , Radiossensibilizantes , Reishi/química , Sulfetos , Animais , Bismuto/química , Bismuto/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Células Dendríticas/patologia , Feminino , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/efeitos da radiação , Interferon gama/imunologia , Interleucina-4/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Experimentais/patologia , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Sulfetos/química , Sulfetos/farmacologia
9.
Nanomedicine (Lond) ; 14(10): 1291-1306, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31084395

RESUMO

Aim: To investigate the immune responses and antitumor efficacy of immunoactive polysaccharide functionalized gold nanocomposites (APS-AuNP). Materials & methods: Immunoregulation of APS-AuNP on dendritic cells/T cells in vitro was evaluated by flow cytometry and their inhibitions against primary/metastatic tumors were determined on 4T1-bearing mice model. Results & conclusion: APS-AuNP exhibited remarkable capability to induce dendritic cells maturation through phenotypic markers with functional changes, which further promoted T-cell proliferation and enhanced cytotoxicity against 4T1 tumor cells. The inhibitory rate of APS-AuNP against 4T1 primary tumor growth and pulmonary metastasis in mice was higher than paclitaxel-treated group. In addition, APS-AuNP exhibited strong capability to increase the population of CD4+/CD8+ T lymphocytes as well as effector memory cells rather than central memory cells.


Assuntos
Adjuvantes Imunológicos/química , Antineoplásicos/química , Células Dendríticas/imunologia , Ouro/química , Nanocompostos/química , Polissacarídeos/química , Linfócitos T/imunologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Ativação Linfocitária , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Transplante de Neoplasias , Óxido Nítrico/metabolismo , Paclitaxel/química , Paclitaxel/farmacologia , Polissacarídeos/imunologia
10.
Carbohydr Polym ; 205: 192-202, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446095

RESUMO

Polysaccharides purified from natural herbs possess immunoregulatory functions, while the efficacy of natural polysaccharides on cancer treatment remains unreliable, likely due to their low prescribed doses and fast clearances in clinical settings. In this study, gold nanocomposites containing Ganoderma lucidum polysaccharide (GLP-Au) efficiently induced dendritic cell (DC) activation, evident by the increase of CD80/CD86/CD40/MHCII, decrease of phagocytic ability and acid phosphatase activity, and increased cytokine transcription. GLP-Au significantly promoted the proliferation of CD4+ and CD8+ T cells in splenocytes. DC/T cell co-culture study proved that GLP-Au activation on DC directly resulted in T cell proliferation. GLP-Au exhibited strong inhibitory effects on 4T1 tumor growth and pulmonary metastasis when combined with doxorubicin. GLP-Au recovered body weight loss by doxorubicin and increased the percentage of CD4+/CD44+ memory T cells. This work suggests that polysaccharides from natural herbs can be incorporated into nanocomposites with immunoregulatory characteristics for enhanced efficacy on tumor therapy.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/terapia , Imunoterapia/métodos , Nanocompostos/química , Polissacarídeos/uso terapêutico , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Doxorrubicina/uso terapêutico , Combinação de Medicamentos , Ouro/química , Camundongos , Metástase Neoplásica/prevenção & controle , Polissacarídeos/química , Polissacarídeos/farmacologia , Reishi/química , Distribuição Tecidual
11.
Carbohydr Polym ; 195: 243-256, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29804974

RESUMO

Polysaccharides from natural resources possess anti-tumor activities for decades, but the efficacy of polysaccharides as the adjuvant drugs for cancer treatment at prescribed doses remains open for debate. In this review, molecular mechanisms involved in direct killing effects of polysaccharides, including apoptosis, cell cycle arrest and mitochondria/DNA damage were described. However, the concentrations/doses used to reach the direct killing effects are too high to be applicable. Polysaccharides can also exert anti-tumor effects through immunoregulation at lower doses, and the effects of polysaccharides on natural killer cells, dendritic cells and other lymphocytes for tumor destruction, along with the receptor recognition and downstream signaling pathways, were delineated. Unfortunately, the prescribed doses of polysaccharides are too low to stimulate immunoresponse, resulting in the failure of some clinical trials. Therefore, understanding the sophisticated mechanisms of the immunoregulatory function of natural polysaccharides with refined doses for clinical use will help the standardization of traditional medicine.


Assuntos
Antineoplásicos/administração & dosagem , Fatores Imunológicos/administração & dosagem , Neoplasias/tratamento farmacológico , Polissacarídeos/administração & dosagem , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Relação Dose-Resposta a Droga , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...