Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(44): 27406-27412, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36331370

RESUMO

Two modified V2C-MXene nanocoatings are prepared through different molecular weights of polyacrylic acid (polyacrylic acid with ∼4 50 000 is marked as LPAA, and polyacrylic acid with ∼4 000 000 is marked as HPAA) and two-dimensional V2C-MXene. Their properties are characterized using a ball-on-disc tribometer, three-dimensional white-light interferometry topography images, optical microscope, Raman spectrometer, focused ion beam/scanning electron microscope and high-resolution transmission electron microscope/energy dispersive X-ray spectrometer (HRTEM/EDS). As a result, an ultralow friction (µ ≈ 0.073 ± 0.024) and an ultralow wear (3.41 × 10-7 mm3 N-1 m-1 for ball scar, and 7.49 × 10-8 mm3 N-1 m-1 for disc track) are achieved for the LPAA@V2C vs. steel ball system tested under 4 N in the air through tribo-physicochemical interactions. During the rubbing process, the LPAA@V2C nanocoating is transferred onto counter-bodies to form mixed-phase lubricative tribofilms. Monitoring via a HRTEM/EDS, the mixed-phase lubricative tribofilms are found to be mainly composed of amorphous carbon phases containing O and V and layered nano-debris along the sliding surface. The tribofilm's stable structure is the key to realizing ultralow friction and ultralow wear through the LPAA modification. These findings disclose that MXene-based nanomaterials can be applied for material engineering and mechanical engineering under common working conditions.

2.
J Phys Chem Lett ; 13(27): 6342-6348, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35796413

RESUMO

We report a long-term lubrication for a PbS QD nanocoating sliding against bearing steel balls in the air. Through tribo-physchemical interactions, ultralow friction (µ ≈ 0.078 ± 0.0026) is achieved for the system tested under 1 N for 60 min. During the rubbing process, the tribo-film of the counterfacing ball is covered by a degraded PbS QD layer and amorphous mixed phase. Meanwhile, the disc track surface is composed of degraded PbS QD layers, clustered rearranged PbS QD districts, induced decomposed Pb-enriched multilayers, and an amorphous mixed phase via friction-induced structural transformation. The PbS QDs are transferred onto the sliding contacts to form a robust tribo-film, which is the key to realizing ultralow friction. Consequently, a long-term lubrication mechanism is attributed to the synergetic tribo-physchemical interaction along sliding interfaces upon shift, redirection, and decomposition of nanoparticles. These discoveries reveal QD-based nanolubricants in common working conditions for mechanical engineering.

3.
RSC Adv ; 12(23): 14509-14520, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35702241

RESUMO

Ideal halogen-free instinct flame-retardant waterborne polyurethanes have high flame-retardant efficiency, environmental friendliness, fine compatibility, and good thermostability. Phosphorus flame-retardants are currently widely used in halogen-free instinct flame-retardant waterborne polyurethanes (HIFWPU), especially those with phosphorous-nitrogen co-structures. Phosphorous-nitrogen HIFWPU have become a hotspot because their co-structures provide higher flame-retardance as compared to waterborne polyurethanes. This review introduces three main types of HIFWPU based on composition, performance and application. HIFWPU not only have improved flame-retardance but also satisfy the various requirements for functionality. HIFWPU have been widely developed in textile, furniture, automobile, and aerospace applications.

4.
Materials (Basel) ; 13(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138250

RESUMO

Surface landscapes have vague impact on the mechanical properties of graphene. In this paper, single-layered graphene sheets (SLGS) with regular wrinkles were first constructed by applying shear deformation using molecular dynamics (MD) simulations and then indented to extract their mechanical properties. The influence of the boundary condition of SLGS were considered. The wrinkle features and wrinkle formation processes of SLGS were found to be significantly related to the boundary conditions as well as the applied shear displacement and velocity. The wrinkling amplitude and degree of wrinkling increased with the increase in the applied shear displacements, and the trends of wrinkling wavelengths changed with the different boundary conditions. With the fixed boundary condition, the degree of graphene wrinkling was only affected when the velocity was greater than a certain value. The effect of wrinkles on the mechanical characterization of SLGS by atomic force microscopy (AFM) nanoindentation was finally investigated. The regular surface wrinkling of SLGS was found to weaken the Young's modulus of graphene. The Young's modulus of graphene deteriorates with the increase in the degree of regular wrinkling.

5.
Nanomaterials (Basel) ; 10(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906488

RESUMO

Using numerical simulations, we study the atomic-scale frictional behaviors of monovacancy-defective graphene and single-layer molybdenum-disulfide (SLMoS2) based on the classical Prandtl-Tomlinson (PT) model with a modified interaction potential considering the Schwoebel-Ehrlich barrier. Due to the presence of a monovacancy defect on the surface, the frictional forces were significantly enhanced. The effects of the PT model parameters on the frictional properties of monovacancy-defective graphene and SLMoS2 were analyzed, and it showed that the spring constant of the pulling spring cx is the most influential parameter on the stick-slip motion in the vicinity of the vacancy defect. Besides, monovacancy-defective SLMoS2 is found to be more sensitive to the stick-slip motion at the vacancy defect site than monovacancy-defective graphene, which can be attributed to the complicated three-layer-sandwiched atomic structure of SLMoS2. The result suggests that the soft tip with a small spring constant can be an ideal candidate for the observation of stick-slip behaviors of the monovacancy-defective surface. This study can fill the gap in atomic-scale friction experiments and molecular dynamics simulations of 2D materials with vacancy-related defects.

6.
Phys Chem Chem Phys ; 21(14): 7454-7461, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30892298

RESUMO

The hysteresis phenomenon frequently arises in two-dimensional (2D) material nanoindentation, which is generally expected to be excluded from characterizing the elastic properties due to the imperfect elastic behaviour. However, the underlying mechanism of hysteresis and its effect on the characterization of the mechanical properties of 2D materials remain unclear. Cyclic loadings are exerted on the suspended monolayer molybdenum-disulfide (MoS2) films in atomic force microscopy (AFM) nanoindentation experiments. The elastic hysteresis loops are observed for most of the force-displacement curves. The friction/wear between the AFM silicon tip and the MoS2 monolayer is deemed to be dominant compared to the friction between the monolayer and the silicon dioxide substrate after the analysis, as determined using the finite element method (FEM) simulation. The loading force-displacement curves instead of the unloading curves have been used to deduce the elastic mechanical properties using a modified regression equation. The mean value of the obtained Young's modulus of monolayer MoS2, E, is equal to 209 ± 18 GPa, which is close to the inherent stiffness value, predicted by first principles calculation. Our results have confirmed that it is not obligatory to exclude the sample data with hysteresis behaviour for characterizing the elastic properties of 2D materials. In addition, all sample sheets have finally been penetrated and the mean breaking stress value, σmax, is 36.6 ± 0.9 GPa, determined using the radius value of the worn tip. Furthermore, the effect of the loading force and the shape/size of the suspended monolayer MoS2 sheets on the hysteresis behaviour in the 2D nanoindentation have also been analyzed and discussed, exhibiting interesting trends. Our findings provide guidance for the characterization of the mechanical properties of 2D materials using the AFM nanoindentation and the experimental samples with elastic hysteresis behaviour.

7.
Nanomaterials (Basel) ; 8(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857522

RESUMO

Lateral-force microscopy is a powerful tool to study the frictional properties of two-dimensional materials. However, few works distinctly reveal the correlation between the tip radius with the tip⁻sample distance and the frictional properties of the two-dimensional (2D) materials. We performed molecular-dynamics simulations to study the atomic-scale friction of a typical two-dimensional single-layer molybdenum disulfide (SLMoS2). The effects of tip radius and tip⁻sample distance on the frictional properties were analyzed and discussed. The frictional force⁻sliding-distance curves show typical stick⁻slip behaviors, and the periodicity can be used to characterize the lattice constants of SLMoS2. Sub-nanoscale stick-slip movements occur in one-lattice sliding periods along with only the armchair (AC) direction and only when the tip radius is smaller than 3 Šwith 1.47 Štip-sample distance. At the same tip⁻sample distance, a smaller tip can provide a more detailed characterization and higher-precision frictional properties of SLMoS2. A larger tip is capable of providing comparative frictional properties of SLMoS2 at a proper vertical tip⁻sample distance, compared with the small tip.

8.
Materials (Basel) ; 11(4)2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29584676

RESUMO

The single-layer molybdenum disulfide (SLMoS2) nanosheets have been experimentally discovered to exist in two different polymorphs, which exhibit different electrical properties, metallic or semiconducting. Herein, molecular dynamics (MD) simulations of nanoindentation and uniaxial compression were conducted to investigate the phase transition of SLMoS2 nanosheets. Typical load-deflection curves, stress-strain curves, and local atomic structures were obtained. The loading force decreases sharply and then increases again at a critical deflection under the nanoindentation, which is inferred to the phase transition. In addition to the layer thickness, some related bond lengths and bond angles were also found to suddenly change as the phase transition occurs. A bell-like hollow, so-called residual deformation, was found to form, mainly due to the lattice distortion around the waist of the bell. The effect of indenter size on the residual hollow was also analyzed. Under the uniaxial compression along the armchair direction, a different phase transition, a uniformly quadrilateral structure, was observed when the strain is greater than 27.7%. The quadrilateral structure was found to be stable and exhibit metallic conductivity in view of the first-principle calculation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...