Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(13): 9403-9412, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488193

RESUMO

Diatomic-site catalysts (DASCs) inherit the excellent performance of single-atom catalysts (SACs) by utilizing two adjacent atomic metal species to achieve functional complementarity and synergistic effects that improve the carbon dioxide reduction reaction (CO2RR) and H2 evolution reaction (HER) kinetics. Herein, we report a method to further improve the catalytic efficiency of Pt by using Pt and Ru single atoms randomly anchored on a g-C3N4 surface, yielding partial Pt-Ru dimers. The synthesized catalyst exhibits extraordinary photocatalytic activity and stability in both the CO2RR and HER processes. In-depth experimentation, the pH-dependent chemical exchange saturation transfer (CEST) imaging nuclear magnetic resonance (NMR) method, and theoretical analyses reveal that the excellent performance is attributed to orbital coupling between the Pt atoms and the neighboring Ru atoms (mainly dxy and dxz), which decreases the orbital energy levels and weakens the bond strength with intermediates, resulting in improved CO2RR and HER performance. This study successfully applies the pH-dependent CEST imaging NMR method to catalytic reactions, and CO2 adsorption is directly observed using CEST 2D imaging maps. This work presents significant potential for a variety of catalytic reaction applications by systematically designing bimetallic dimers with higher activity and stability.

2.
Chem Commun (Camb) ; 60(35): 4652-4655, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38440802

RESUMO

The optimal ratio of reaction solutions resulted in excellent performance and product selectivity of CuO/g-C3N4 composites in the photocatalytic CO2 reduction reaction. A pH-dependent chemical exchange saturation transfer (CEST) imaging nuclear magnetic resonance (NMR) method was used to confirm that CuO modification improves the adsorption capacity of CO2.

3.
Front Plant Sci ; 13: 833682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646040

RESUMO

Geraniol is a potent tea odorant and exists mainly as geranyl glycoside in Camellia sinensis. Understanding the mechanisms of geraniol biosynthesis at molecular levels in tea plants is of great importance for practical improvement of tea aroma. In this study, geraniol and its glycosides from tea plants were examined using liquid chromatography coupled with mass spectrometry. Two candidate geraniol synthase (GES) genes (CsTPS) and two Nudix hydrolase genes (CsNUDX1-cyto and CsNUDX1-chlo) from the tea genome were functionally investigated through gene transcription manipulation and gene chemical product analyses. Our data showed that in tea leaves, levels of geranyl ß-primeveroside were dramatically higher than those of geranyl ß-glucoside, while free geraniol was undetectable in this study. A tempo-spatial variation of geranyl ß-primeveroside abundance in tea plants existed, with high levels in young and green tissues and low levels in mature or non-green tissues. Cytosolic CsNUDX1-cyto showed higher hydrolysis activity of geranyl-pyrophosphate to geranyl-monophosphate (GP) in vitro than did chloroplastidial CsNUDX1-chlo. A transgenic study revealed that expression of CsNUDX1-cyto resulted in significantly more geranyl ß-primeveroside in transgenic Nicotiana benthamiana compared with non-transgenic wild-type, whereas expression of CsNUDX1-chlo had no effect. An antisense oligo-deoxynucleotide study confirmed that suppression of CsNUDX1-cyto transcription in tea shoots led to a significant decrease in geranyl ß-primeveroside abundance. Additionally, CsNUDX1-cyto transcript levels and geranyl ß-primeveroside abundances shared the same tempo-spatial patterns in different organs in the tea cultivar "Shucha Zao," indicating that CsNUDX1-cyto is important for geranyl ß-primeveroside formation in tea plants. Results also suggested that neither of the two candidate GES genes in tea plants did not function as GES in transgenic N. benthamiana. All our data indicated that CsNUDX1-cyto is involved in geranyl ß-primeveroside production in tea plants. Our speculation about possible conversion from the chemical product of CsNUDX1-cyto to geranyl ß-primeveroside in plants was also discussed.

4.
DNA Res ; 29(2)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35438173

RESUMO

Cercidoideae, one of the six subfamilies of Leguminosae, contains one genus Cercis with its chromosome number 2n = 14 and all other genera with 2n = 28. An allotetraploid origin hypothesis for the common ancestor of non-Cercis genera in this subfamily has been proposed; however, no chromosome-level genomes from Cercidoideae have been available to test this hypothesis. Here, we conducted a chromosome-level genome assembly of Bauhinia variegata to test this hypothesis. The assembled genome is 326.4 Mb with the scaffold N50 of 22.1 Mb and contains 37,996 protein-coding genes. The Ks distribution between gene pairs in the syntenic regions indicates two whole-genome duplications (WGDs): one is B. variegata-specific, and the other is shared among core eudicots. Although Ks between gene pairs generated by the recent WGD in Bauhinia is greater than that between Bauhinia and Cercis, the WGD was not detected in Cercis, which can be explained by an accelerated evolutionary rate in Bauhinia after divergence from Cercis. Ks distribution and phylogenetic analysis for gene pairs generated by the recent WGD in Bauhinia and their corresponding orthologs in Cercis support the allopolyploidy origin hypothesis of Bauhinia. The genome of B. variegata also provides a genomic resource for dissecting genetic basis of its ornamental traits.


Assuntos
Bauhinia , Fabaceae , Bauhinia/genética , Evolução Biológica , Cromossomos , Fabaceae/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...