Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Fiber Mater ; 6(1): 252-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495973

RESUMO

Given the abundant solar light available on our planet, it is promising to develop an advanced fabric capable of simultaneously providing personal thermal management and facilitating clean water production in an energy-efficient manner. In this study, we present the fabrication of a photothermally active, biodegradable composite cloth composed of titanium carbide MXene and cellulose, achieved through an electrospinning method. This composite cloth exhibits favorable attributes, including chemical stability, mechanical performance, structural flexibility, and wettability. Notably, our 0.1-mm-thick composite cloth (RC/MXene IV) raises the temperature of simulated skin by 5.6 °C when compared to a commercially available cotton cloth, which is five times thicker under identical ambient conditions. Remarkably, the composite cloth (RC/MXene V) demonstrates heightened solar light capture efficiency (87.7%) when in a wet state instead of a dry state. Consequently, this cloth functions exceptionally well as a high-performance steam generator, boasting a superior water evaporation rate of 1.34 kg m-2 h-1 under one-sun irradiation (equivalent to 1000 W m-2). Moreover, it maintains its performance excellence in solar desalination processes. The multifunctionality of these cloths opens doors to a diverse array of outdoor applications, including solar-driven water evaporation and personal heating, thereby enriching the scope of integrated functionalities for textiles. Supplementary Information: The online version contains supplementary material available at 10.1007/s42765-023-00345-w.

2.
ACS Nano ; 18(4): 3707-3719, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38230678

RESUMO

The true promise of MXene as a practical supercapacitor electrode hinges on the simultaneous advancement of its three-dimensional (3D) assembly and the engineering of its nanoscopic architecture, two critical factors for facilitating mass transport and enhancing an electrode's charge-storage performance. Herein, we present a straightforward strategy to engineer robust 3D freestanding MXene (Ti3C2Tx) hydrogels with hierarchically porous structures. The tetraamminezinc(II) complex cation ([Zn(NH3)4]2+) is selected to electrostatically assemble colloidal MXene nanosheets into a 3D interconnected hydrogel framework, followed by a mild oxidative acid-etching process to create nanoholes on the MXene surface. These hierarchically porous, conductive holey-MXene frameworks facilitate 3D transport of both electrons and electrolyte ions to deliver an excellent specific capacitance of 359.2 F g-1 at 10 mV s-1 and superb capacitance retention of 79% at 5000 mV s-1, representing a 42.2% and 15.3% improvement over pristine MXene hydrogel, respectively. Even at a commercial-standard mass loading of 10.1 mg cm-2, it maintains an impressive capacitance retention of 52% at 1000 mV s-1. This rational design of an electrode by engineering nanoholes on MXene nanosheets within a 3D porous framework dictates a significant step forward toward the practical use of MXene and other 2D materials in electrochemical energy storage systems.

3.
Nanomaterials (Basel) ; 13(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887937

RESUMO

Fe3C nanoparticles hold promise as catalysts and nanozymes, but their low activity and complex preparation have hindered their use. Herein, this study presents a synthetic alternative toward efficient, durable, and recyclable, Fe3C-nanoparticle-encapsulated nitrogen-doped hierarchically porous carbon membranes (Fe3C/N-C). By employing a simple one-step synthetic method, we utilized wood as a renewable and environmentally friendly carbon precursor, coupled with poly(ionic liquids) as a nitrogen and iron source. This innovative strategy offers sustainable, high-performance catalysts with improved stability and reusability. The Fe3C/N-C exhibits an outstanding peroxidase-like catalytic activity toward the oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of hydrogen peroxide, which stems from well-dispersed, small Fe3C nanoparticles jointly with the structurally unique micro-/macroporous N-C membrane. Owing to the remarkable catalytic activity for mimicking peroxidase, an efficient and sensitive colorimetric method for detecting ascorbic acid over a broad concentration range with a low limit of detection (~2.64 µM), as well as superior selectivity, and anti-interference capability has been developed. This study offers a widely adaptable and sustainable way to synthesize an Fe3C/N-C membrane as an easy-to-handle, convenient, and recoverable biomimetic enzyme with excellent catalytic performance, providing a convenient and sensitive colorimetric technique for potential applications in medicine, biosensing, and environmental fields.

4.
Sci Adv ; 9(43): eadi6119, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889974

RESUMO

Oxide-derived copper (OD-Cu) is the most efficient and likely practical electrocatalyst for CO2 reduction toward multicarbon products. However, the inevitable but poorly understood reconstruction from the pristine state to the working state of OD-Cu under strong reduction conditions largely hinders the rational construction of catalysts toward multicarbon products, especially C3 products like n-propanol. Here, we simulate the reconstruction of CuO and Cu2O into their derived Cu by molecular dynamics, revealing that CuO-derived Cu (CuOD-Cu) intrinsically has a richer population of undercoordinated Cu sites and higher surficial Cu atom density than the counterpart Cu2O-derived Cu (Cu2OD-Cu) because of the vigorous oxygen removal. In situ spectroscopes disclose that the coordination number of CuOD-Cu is considerably lower than that of Cu2OD-Cu, enabling the fast kinetics of CO2 reaction and strengthened binding of *C2 intermediate(s). Benefiting from the rich undercoordinated Cu sites, CuOD-Cu achieves remarkable n-propanol faradaic efficiency up to ~17.9%, whereas the Cu2OD-Cu dominantly generates formate.

5.
Adv Mater ; 35(41): e2209215, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36972562

RESUMO

Maintaining human thermal comfort in the cold outdoors is crucial for diverse outdoor activities, e.g., sports and recreation, healthcare, and special occupations. To date, advanced clothes are employed to collect solar energy as a heat source to stand cold climates, while their dull dark photothermal coating may hinder pragmatism in outdoor environments and visual sense considering fashion. Herein, tailor-made white webs with strong photothermal effect are proposed. With the embedding of cesium-tungsten bronze (Csx WO3 ) nanoparticles (NPs) as additive inside nylon nanofibers, these webs are capable of drawing both near-infrared (NIR) and ultraviolet (UV) light in sunlight for heating. Their exceptional photothermal conversion capability enables 2.5-10.5 °C greater warmth than that of a commercial sweatshirt of six times greater thickness under different climates. Remarkably, this smart fabric can increase its photothermal conversion efficiency in a wet state. It is optimal for fast sweat or water evaporation at human comfort temperature (38.5 °C) under sunlight, and its role in thermoregulation is equally important to avoid excess heat loss in wilderness survival. Obviously, this smart web with considerable merits of shape retention, softness, safety, breathability, washability, and on-demand coloration provides a revolutionary solution to realize energy-saving outdoor thermoregulation and simultaneously satisfy the needs of fashion and aesthetics.

6.
Nanoscale ; 12(13): 7024-7034, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32091065

RESUMO

Due to their features of low cost, good corrosion resistance and environmental friendliness, transition metal oxides/nitrides are among the most promising materials for energy storage and conversion. Meanwhile, graphitic carbon nitride is a non-metallic polymer that has been widely used in the environmental and energy conversion fields due to its abundant precursor species and simple process of synthesis. In this study, an amorphous carbon nitride/NiO/CoN-based composite (Ni-Co-CN) is in situ fabricated via simple one-step pyrolysis; it displays high capacitive performance and efficient electrocatalytic capability for the oxygen evolution reaction (OER). Specifically, the optimized Ni-Co-CN electrode shows an ultra-high areal specific capacitance of 18.8 F cm-2 at 2 mA cm-2 in 3 M KOH electrolyte, and it retains 91.4% of its areal specific capacitance even after 10 000 cycles of CV scans. Upon being used as an electrocatalyst in the OER process, the overpotential of Ni-Co-CN can reach 195 mV versus a reference hydrogen electrode (RHE) at 10 mA cm-2, which is far lower than those of most reported Ni/Co-based catalysts. Additionally, the potential loss of Ni-Co-CN electrode is less than 1% after a long-term durability test over 60 h. The experimental results integrated with density functional theoretical calculations reveal that the excellent performance of the Ni-Co-CN self-supported electrode can be ascribed to the fast redox reduction of multi-valent transition metal ions, abundant surface defects and plentiful nano-scaled porous structures. This work provides a promising strategy for exploring methods to combine economic Ni/Co-based compounds with carbon-based materials to obtain low-cost yet efficient electrode materials for electrochemical energy storage and conversion.

7.
Nanoscale ; 11(42): 20284-20294, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31633137

RESUMO

Molybdenum disulfide (MoS2) is a potential earth-abundant electrocatalyst for the hydrogen evolution reaction (HER), but the lack of in-depth understanding of its intrinsic activity still impedes the further optimization and design of MoS2-based electrocatalysts. Herein, we report a facile in situ hydrothermal synthetic method to prepare vertical MoxSy arrays grown on guar gum-derived carbon aerogels (GCA), termed MoxSy@GCA. The obtained well-assembled MoxSy@GCA architectures consist of uniform, few-layered and S-edge-rich MoxSy nanoflakes with a length of approximately 100 nm, which effectively prevent the inherent stacking among MoxSy layers and connect the charge transfer path between interlayers, thus endowing MoxSy@GCA with a huge number of active sites and high conductivity. Benefitting from all these advantages, the optimal Mo4S16@GCA exhibited extraordinary HER/OER performances, including a low onset potential for both the HER (24.28 mV) and OER (1.53 V), and a low overpotential at 10 mA cm-2 for the HER (54.13 mV) and OER (370 mV), which are both extremely close to that of the noble Pt/C. Furthermore, a series of operando Raman spectroscopy measurements on Mo4S16@GCA were conducted to identify the intrinsic HER/OER-active sites during the HER and OER process. The results show that the S-H bond is generated simultaneously as HER/OER excitation, indicating the rich S-edge may be the intrinsic active site, which will accelerate the HER/OER kinetic process. Density functional theory (DFT) calculations revealed that the observed superb HER/OER activity can be attributed to the synergistic effect of rich S-edge of MoxSy and confinement effect of GCA, which collaboratively promote the proton adsorption and electrocatalytic kinetics. Reasonably, this study will have profound guiding value for the rational tailoring of the microstructure and size of transition metal electrocatalysts via hierarchical porous carbon aerogels.

8.
J Mater Chem B ; 7(7): 1050-1055, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254772

RESUMO

Core-shell Au@zeolitic-imidazolate-framework-8 (ZIF-8) nanostructures are reported as a nanocarrier with both a high drug payload and high cancer treatment efficiency in vitro. Impressively, when used as multifunctional drug delivery vehicles, such core-shell Au@ZIF-8 nanostructures not only exhibit light- and pH-controlled drug release properties, but also provide two synergetic therapeutic modes for cancer treatment, resulting in 98% cell-killing activity after 30 min light irradiation followed by 24 h incubation even though HeLa cells are treated only by Au@ZIF-8 nanostructures loaded with 10 µM doxorubicin hydrochloride. All these results demonstrate the promising applications of this type of core-shell nanostructure in biomedical fields.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Nanoestruturas/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Ouro/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Imidazóis/química , Zeolitas/química
9.
Angew Chem Int Ed Engl ; 57(50): 16511-16515, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30378233

RESUMO

Efficient nonprecious-metal oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts are key for the commercial viability of fuel cells, metal-air batteries, and water-splitting systems. Thus, high-performance ORR and OER electrocatalysts in acidic electrolytes are needed to support high-efficiency proton exchange membrane (PEM)-based systems. Herein, we report a new approach to design and prepare an ultrathin N-doped holey carbon layer (HCL) on a graphene sheet that exhibits outstanding bifunctional ORR/OER activities in both alkaline and acidic media. The edge sites of HCL are utilized to achieve selective doping of highly active pyridinic-N. The sandwiched graphene sheet provides mechanical support, stabilizes HCL structure and promotes charge transfer. The synergetic effect of the catalyst structure overcomes the drawbacks of holey graphene approaches. The resulting ORR and OER performances are equal to or better than the top-ranked electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...