Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(23): 12207-12215, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38822806

RESUMO

Photocatalytic ammonia synthesis (PAS) represents an emerging environmentally friendly approach to ammonia production. In this work, we employed Fe doping to modify the cocatalyst 1T MoS2, enhancing the active N2 sites on Fe-1T MoS2 by inducing defects on the surface of 1T MoS2. Afterward, Fe-1T MoS2 was loaded onto a hollow coral-like graphitic carbon nitride (CCN)/FeOCl composite. Under simulated sunlight, the efficiency of 5% Fe-1T MoS2@CCN/FeOCl (Fe-MCN/FeOCl) reached 367.62 µmol g-1 h-1, surpassing 1T MoS2@CCN(MCN) by 3.2 times, CCN by 16.9 times, and g-C3N4 by 32.5 times, where 5% means the doping amount of Fe in 1T MoS2. The good performance of Fe MCN/FeOCl should be attributed to the Fe doping in Fe-MCN/FeOCl which not only increases the separation efficiency of active sites and charge carriers, but also reduces the sample impedance significantly through the heterojunction formed between CCN and FeOCl. This work also presents a method for creating more efficient and stable photocatalysts for ammonia synthesis.

2.
Langmuir ; 39(24): 8475-8483, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37289619

RESUMO

Photocatalytic nitrogen fixation is a promising alternative to the Haber-Bosch process to alleviate the energy and environmental crises. Here, we designed a pinecone-shaped graphite-phase carbon nitride (PCN) catalyst supported with MoS2 nanosheets by a supramolecular self-assembly method. The catalyst shows an excellent photocatalytic nitrogen reduction reaction (PNRR) due to the larger specific surface area and the enhancement of visible light owing to the reduced band gap. Under simulated sunlight, the sample of PCN loaded with 5 wt % MoS2 nanosheets (MS5%/PCN) shows a PNRR efficiency of 279.41 µmol g-1 h-1, which is 14.9 times that of bulk graphite-phase carbon nitride (g-C3N4), 4.6 times that of PCN, and 5.4 times that of MoS2, respectively. The unique pinecone-like structure of MS5%/PCN not only improves the ability of light absorption but also assists in the uniform loading of MoS2 nanosheets. Likewise, the existence of MoS2 nanosheets improves the light absorption ability of the catalyst and reduces the impedance of the catalyst. Furthermore, as a co-catalyst, MoS2 nanosheets can efficiently adsorb nitrogen (N2) and serve as active N2 reduction sites. From the perspective of structural design, this work can offer novel solutions for the creation of effective N2-fixing photocatalysts.

3.
Materials (Basel) ; 15(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36556615

RESUMO

Silicon-based ceramic aerogels obtained by the polymer pyrolysis route possess excellent thermophysical properties, but their poor mechanical properties limit their broader applicability in thermal insulation materials. Herein, SiCN(O) ceramic aerogels were prepared under the toughening effect of a crosslinker (hexamethylene diisocyanate, HDI), which maintains the structural integrity of the aerogel during the wet gel-to-aerogel conversion. The aerogel maintained a high surface area (88.6 m2 g-1) and large pore volume (0.21 cm3 g-1) after pyrolysis. Based on this, mullite-fiber-reinforced SiCN(O) aerogels composites with outstanding thermal insulation properties and better mechanical performance were synthesized via ambient pressure impregnation. Furthermore, the effect of the impregnation concentration on the mechanical and insulation properties of the composites was investigated. The results revealed that the composite prepared with a solution ratio of 95 wt.% exhibited a low density (0.11 g cm-3) and a low thermal conductivity (0.035 W m-1 K-1), indicating an ~30% enhancement in its thermal insulation performance compared to the mullite fiber; the mesoporous aerogel structures wrapped on the mullite fibers inhibited the gas thermal conduction inside the composites.

4.
Small ; 18(32): e2203307, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843875

RESUMO

Metal-organic frameworks (MOFs), known as porous coordination polymers, have attracted intense interest as electrode materials for supercapacitors (SCs) owing to their advantageous features including high surface area, tunable porous structure, structural diversity, etc. However, the insulating nature of most MOFs has impeded their further electrochemical applications. A common solution for this issue is to transform pristine MOFs into more stable and conductive metal compounds/porous carbon materials through pyrolysis, which however losses the inherent merits of MOFs. To find a consummate solution, recently a surge of research devoted to improving the electrical conductivity of pristine MOFs for SCs has been carried out. In this review, the most related research work on pristine MOF-based materials is reviewed and three effective strategies (chemical structure design of conductive MOFs (c-MOFs), composite design, and binder-free structure design) which can significantly increase their conductivity and consequently the electrochemical performance in SCs are proposed. The conductivity enhancement mechanism in each approach is well analyzed. The representative research works on using pristine MOFs for SCs are also critically discussed. It is hoped that the new insights can provide guidance for developing high-performance electrode materials based on pristine MOFs with high conductivity for SCs in the future.

5.
ACS Appl Mater Interfaces ; 12(42): 47993-48006, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33044824

RESUMO

Three-dimensional (3D) printing technologies are widely applied in various industries and research fields and are currently the subject of intensive investigation and development. However, high-performance materials that are suitable for 3D printing are still in short supply, which is a major limitation for 3D printing, particularly for biomedical applications. The physicochemical properties of single constituent materials may not be sufficient to meet the needs of modern biotechnology development and production. To enhance the materials' performance and broaden their applications, this work designed and tested a series of titanate nanofiller (nanowire and nanotube)-enhanced polycaprolactone (PCL) composites that were 3D-printable and provided superior mechanical properties. By grafting two different functional groups (phenyl- and thiol-terminated ligands), the nanofiller surface showed improved hydrophobicity, which significantly improved their dispersion in the PCL matrix. After characterizing the surface modification, we evaluated the significance of the homogeneity of the ceramic nanofiller in terms of printability, formability, and mechanical strength. Melt electrowriting additive manufacturing was used to fabricate microfibers of PCL and PCL/nanofiller composites. Improved nanofiller dispersion enabled intact and uniform sample morphology, and in contrast, nanofiller aggregation greatly varied the viscosity during the printing process, which could result in poorly printed structures. Importantly, the modified ceramic/PCL composite delivered enhanced and stable mechanical properties, where its Young's modulus was measured to be 1.67 GPa, which is more than 7 times higher compared to that of pristine PCL (0.22 GPa). Retaining the cell safety properties (comparable to PCL), the concept of enhancing biocompatible polymers with modified nanofillers shows great potential in the field of customized 3D printing for biomedicine.


Assuntos
Nanopartículas Metálicas/química , Poliésteres/química , Impressão Tridimensional , Titânio/química , Estrutura Molecular , Tamanho da Partícula , Estresse Mecânico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...