Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thromb J ; 21(1): 74, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37424014

RESUMO

With its low morbidity and high mortality rates, thrombotic thrombocytopenic purpura (TTP) has imposed a critical physical and economic burden on both society and individuals. Thrombocytopenia commonly occurs in severe liver failure, and a variety of hepatitis viruses are known to induce immune thrombocytopenic purpura. However, TTP is extremely rare in hepatitis E virus infection. We hereby report a case of a 53-year-old male who present with TTP caused by severe hepatitis E, and the patients achieved successful recovery after treatment. Therefore, we propose considering AMAMTS13 testing as an essential and beneficial approach for accurately diagnosing and treating patients with severe hepatitis or infection with notable platelet decline.

2.
Infect Drug Resist ; 16: 1579-1590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969944

RESUMO

Purpose: Community-associated bloodstream infection (CA-BSI) is increasing in many community settings. However, the clinical significance and epidemiology of CA-BSI present in hospital admissions in China are not well established. In this work, we identified the risk factors in outpatients presenting with CA-BSI, and investigate the role of procalcitonin (PCT) and hypersensitive C-reactive protein (CRP) in diagnosing different types of the pathogen in patients with acute CA-BSI. Methods: A retrospective study enrolling 219 outpatients with CA-BSI from The Zhejiang People's Hospital from January 2017 to December 2020 was performed. Susceptibility of the isolates obtained from these patients was examined. Subjecting receiver operating characteristic curves (ROC) were constructed to analyze the specificity and sensitivity of PCT, CRP, and WBC in determining infections caused by different bacterial genera. Risk factors for CA-BSI in the emergency setting were analyzed using essential information and simple identification of other pathogenic bacterial species through rapidly tested biomarkers. Results: A total of 219 patients were included in the selection criteria, of which 103 were infected with Gram-positive bacteria (G+) and 116 with Gram-negative bacteria (G-). The PCT was significantly higher in the GN-BSI group than in the GP-BSI group, while no significant difference was observed between the two groups for CRP. Subjecting ROC curves were constructed to analyze WBC, CRP, and PCT, and the area under the curve (AUC) of the PCT in this model was 0.6661, with sensitivity = 0.798 and specificity = 0.489. Conclusion: The PCT between the GP-BSI group and the GN-BSI group was significantly different. By combining the knowledge of clinicians and the clinical signs of patients, PCT should be utilized as a supplementary approach to initially determine pathogens and direct medication in the early stages of clinical practice.

3.
J Immunother Cancer ; 11(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36822671

RESUMO

BACKGROUND: Ovarian cancer is the deadliest type of malignant gynecological tumor. Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are involved ovarian cancer and are closely related to adverse outcomes. However, the immunosuppressive mechanism of PMN-MDSCs remains elusive. METHODS: The types and numbers of ANKRD22-expressing cells were investigated by bioinformatics analysis and immunohistochemical staining. Ankrd22-/- C57BL/6 mice were constructed with CRISPR-Cas9 technology. Mouse PMN-MDSCs were obtained from bone marrow (BM)-derived CD11b+Ly6G+Ly6Clow cells sorted by fluorescence-activated cell sorting with treatment of GM-CSF and IL-6, and the immunosuppressive activity of PMN-MDSCs was evaluated by flow cytometry (FCM) and ELISA. The expression level of CCR2 and the exogenous glucose uptake capacity were determined by FCM. RT-qPCR was used to detect ANKRD22 expression in CD11b+HLA-DR-CD14-CD15+ cells from human ovarian cancer tissues, and the correlations of ANKRD22 expression with the clinical characteristics and prognosis of patients were evaluated by the χ2 test. RESULTS: We identified a novel protein involved in regulating the immunosuppressive ability of PMN-MDSCs, ANKRD22. Ankrd22 expression was high in mouse CD11b+Ly6G+Ly6Clow cells and could be significantly downregulated after exposure to a simulated microenvironmental stimulus. Knockout of Ankrd22 increased the expression level of CCR2 of CD11b+Ly6G+Ly6Clow cells and the immunosuppressive activity of PMN-MDSCs. BM-derived CD11b+Ly6G+Ly6Clow cells of Ankrd22-/- mice significantly promoted the proliferation of ovarian cancer cells in tumor xenograft mouse models. Mechanistically, RNA sequencing showed that Wdfy1 expression was obviously increased in Ankrd22-knockout BM-derived CD11b+Ly6G+ Ly6Clow cells and that ectopic expression of Wdfy1 increased the levels of Arg1, Inos, Ido and Pdl1 in Ankrd22+/+ PMN-MDSCs derived from BM-derived CD11b+Ly6G+Ly6Clow cells. Surprisingly, an ANKRD22-activating candidate small-molecule compound attenuated the immunosuppressive activity of Ankrd22+/+ PMN-MDSCs. Finally, we found that low ANKRD22 levels in CD11b+HLA-DR-CD14-CD15+ cells derived from primary ovarian tissues were associated with a more advanced International Federation of Gynecology and Obstetrics stage, a higher recurrence rate, and a higher neutrophil-to-lymphocyte ratio. CONCLUSIONS: These results suggest that ANKRD22 is a potential novel target for reversing the immunosuppressive effects of PMN-MDSCs.


Assuntos
Células Supressoras Mieloides , Neoplasias Ovarianas , Humanos , Camundongos , Feminino , Animais , Camundongos Knockout , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Camundongos Endogâmicos C57BL , Antígenos HLA-DR , Imunossupressores
4.
Front Public Health ; 10: 928306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910903

RESUMO

Background: Studies have shown that lymphocyte dysfunction can occur during the early stages of sepsis and that cell dysfunction is associated with mitochondrial dysfunction. Therefore, quantifying the mitochondrial function of lymphocytes in patients with sepsis could be valuable for the early diagnosis of sepsis. Methods: Seventy-nine patients hospitalized from September 2020 to September 2021 with Sepsis-3 were retrospectively analyzed and subsequently compared with those without sepsis. Results: Univariate analysis showed statistical differences between the data of the two groups regarding age, neutrophil/lymphocyte, procalcitonin (PCT), C-reactive protein, total bilirubin, serum creatinine, type B natriuretic peptide, albumin, prothrombin time, activated partial thromboplastin time, lactic acid, single-cell mitochondrial mass (SCMM)-CD3, SCMM-CD4, SCMM-CD8, and Acute Physiology and Chronic Health Evaluation II score (P < 0.05). Multivariate logistic regression analysis performed on the indicators mentioned above demonstrated a statistical difference in PCT, lactic acid, SCMM-CD4, and SCMM-CD8 levels between the two groups (P < 0.05). The receiver operating characteristic curves of five models were subsequently compared [area under the curve: 0.740 (PCT) vs. 0.933 (SCMM-CD4) vs. 0.881 (SCMM-CD8) vs. 0.961 (PCT + SCMM-CD4) vs. 0.915 (PCT+SCMM-CD8), P < 0.001]. Conclusion: SCMM-CD4 was shown to be a better diagnostic biomarker of early sepsis when compared with the traditional biomarker, PCT. Furthermore, the value of the combination of PCT and SCMM-CD4 in the diagnosis of early sepsis was better than that of SCMM-CD4 alone.


Assuntos
Mitocôndrias , Sepse , Linfócitos T , Biomarcadores , Humanos , Ácido Láctico , Linfócitos/patologia , Mitocôndrias/patologia , Pró-Calcitonina , Prognóstico , Estudos Retrospectivos , Sepse/diagnóstico , Linfócitos T/patologia
5.
Bioengineered ; 13(2): 4260-4270, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35191812

RESUMO

Cardiac hypertrophy results from the adaptive response of the myocardium to pressure overload on the heart. Tanshinone IIA (Tan IIA) is the major active compound extracted from Salvia miltiorrhiza Bunge, which possesses various pharmacological benefits. In the present study, the effect and mechanism of action of Tan IIA on cardiac hypertrophy were studied. Ang II-induced and transverse aortic constriction (TAC)-induced cardiomyocyte hypertrophy models were used to evaluate the effect of Tan IIA. An adenoviral vector system was utilized to overexpress galectin-3. The results revealed that Tan IIA significantly inhibited Ang II-induced hypertrophy in vitro and TAC-induced cardiac hypertrophy in vivo. Furthermore, Tan IIA notably inhibited the expression of galectin-3. Rescue experiments indicated that galectin-3 overexpression reversed the effects of Tan IIA, which further validated the interaction between Tan IIA and galectin-3. Additionally, Tan IIA suppressed alkB homolog 5, RNA demethylase (ALKBH5)-mediated N6-methyladenosine (m6A) modification of galectin-3. In summary, the results of the present study indicated that Tan IIA attenuates cardiac hypertrophy by targeting galectin-3, suggesting that galectin-3 plays a critical role in cardiac hypertrophy and represents a new therapeutic target.


Assuntos
Abietanos/administração & dosagem , Cardiomegalia/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Galectina 3/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Galectina 3/genética , Humanos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Salvia miltiorrhiza/química , Transdução de Sinais
6.
Aging (Albany NY) ; 13(10): 14219-14233, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33988127

RESUMO

Long non-coding RNAs (lncRNAs) have been implicated in the development of cardiovascular diseases. We observed that lncRNA AK020546 was downregulated following ischemia/reperfusion injury to the myocardium and following H2O2 treatment in H9c2 cardiomyocytes. In vivo and in vitro studies showed that AK020546 overexpression attenuated the size of the ischemic area, reduced apoptosis among H9c2 cardiomyocytes, and suppressed the release of reactive oxygen species, lactic acid dehydrogenase, and malondialdehyde. AK020546 served as a competing endogenous RNA for miR-350-3p and activated the miR-350-3p target gene ErbB3. MiR-350-3p overexpression reversed the effects of AK020546 on oxidative stress injury and apoptosis in H9c2 cardiomyocytes. Moreover, ErbB3 knockdown alleviated the effects of AK020546 on the expression of ErbB3, Bcl-2, phosphorylated AKT, cleaved Caspase 3, and phosphorylated Bad. These findings suggest lncRNA AK020546 protects against ischemia/reperfusion and oxidative stress injury by sequestering miR-350-3p and activating ErbB3, which highlights its potential as a therapeutic target for ischemic heart diseases.


Assuntos
Cardiotônicos/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/genética , Sequência de Bases , Linhagem Celular , Regulação para Baixo/genética , Peróxido de Hidrogênio , MicroRNAs/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Ratos Wistar , Receptor ErbB-3/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais
7.
BMC Cardiovasc Disord ; 21(1): 215, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906602

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion injury (MIRI) is the main pathological manifestation of cardiovascular diseases such as myocardial infarction. The potential therapeutic effects of bone marrow-derived mesenchymal stem cells (BM-MSCs) and the participation of regulatory T cells (Tregs) in MIRI remains to be defined. METHODS: We used the experimental acute MIRI that was induced in mice by left ascending coronary ischemia, which were subsequently randomized to receive immunoglobulin G (IgG) or anti-CD25 antibody PC61 with or without intravenously injected BM-MSCs. The splenectomized mice underwent prior to experimental MIRI followed by intravenous administration of BM-MSCs. At 72 h post-MIRI, the hearts and spleens were harvested and subjected to cytometric and histologic analyses. RESULTS: CD25+Foxp3+ regulatory T cells were significantly elevated after MIRI in the hearts and spleens of mice receiving IgG + BM-MSCs and PC61 + BM-MSCs compared to the respective control mice (all p < 0.01). This was accompanied by upregulation of interleukin 10 and transforming growth factor ß1 and downregulation of creatinine kinase and lactate dehydrogenase in the serum. The post-MIRI mice receiving BM-MSCs showed attenuated inflammation and cellular apoptosis in the heart. Meanwhile, splenectomy compromised all therapeutic effects of BM-MSCs. CONCLUSION: Administration of BM-MSCs effectively alleviates MIRI in mice through inducing Treg activation, particularly in the spleen.


Assuntos
Transplante de Células-Tronco Mesenquimais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/imunologia , Baço/imunologia , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Apoptose , Creatina Quinase/sangue , Modelos Animais de Doenças , Imunoglobulina G/farmacologia , Interleucina-10/sangue , L-Lactato Desidrogenase/sangue , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Necrose , Fenótipo , Baço/efeitos dos fármacos , Baço/metabolismo , Esplenectomia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta1/sangue
8.
Arch Biochem Biophys ; 694: 108602, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32980351

RESUMO

Acute myocardial infarction (AMI) is a fetal cardiovascular disease with high morbidity and mortality worldwide. In the present study, we elucidated the role of galectin-3 in preventing myocardial ischemic reperfusion injury. We found that galactin-3 was significantly up-regulated in the myocardium and cardiomyocyte subjected to ischemia/reperfusion (I/R) and hypoxia/reoxygenation (H/R) treatment, respectively. Galectin-3 knockdown significantly decreased the ischemic size of the left ventricular and the apoptosis of cardiomyocytes. Moreover, galectin-3 knockdown reversed the decrease of mitochondrial membrane potential and inhibited the inflammation response in myocardium and cultured cardiomyocyte induced by I/R and H/R, respectively. Further, this study revealed that galectin-3 interacted with bcl-2, instead of bax, in the cardiomyocyte, and regulated the phosphorylation of AKT, p70s6k, JNK, IκB and p65. Our findings demonstrated that galectin-3 could prevent myocardial I/R injury through interacting with bcl-2.


Assuntos
Apoptose/fisiologia , Galectina 3/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Galectina 3/genética , Técnicas de Silenciamento de Genes , Inflamação/metabolismo , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Ratos Sprague-Dawley , Regulação para Cima
9.
Arch Biochem Biophys ; 689: 108405, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32439330

RESUMO

Cardiac hypertrophy is an adaptive response to hemodynamic stress to compensate for cardiac dysfunction. MicroRNAs can regulate cardiac function and play a vital role in the regulation of cardiac hypertrophy. In the current study, in vivo and vitro hypertrophy models are established to explore the role of miR-27b and to elucidate the underlying mechanism in cardiac hypertrophy. Expression of miR-27b was down-regulated in mice with cardiac hypertrophy. The cardiac function of the mice with cardiac hypertrophy could be restored with the overexpression of miR-27b, this is observed in terms of decreasing LVEDd, LVESd, and increasing LVFS, LVEF. This study also predicted and confirmed that galectin-3 is a target gene of miR-27b. Depletion of galectin-3 significantly attenuated hypertrophy of hearts in both in vitro and in vivo tests. In conclusion, MiR-27b be used to exert a protective role against cardiac dysfunction and hypertrophy by decreasing the expression level of galectin-3. The methodology suggested in this study provides a novel therapeutic strategy against cardiac hypertrophy.


Assuntos
Cardiomegalia/genética , Galectina 3/genética , MicroRNAs/genética , Miócitos Cardíacos/patologia , Animais , Cardiomegalia/patologia , Células Cultivadas , Regulação para Baixo , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Regulação para Cima
10.
Mol Med Rep ; 11(4): 3115-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25502794

RESUMO

Tanshinone IIA is a lipophilic abietane diterpene compound, which exhibits protective effects against ischaemia/reperfusion injury; however, the pathways responsible for the myocardial protective activities of tanshinone IIA remain to be elucidated. The aim of the present study was to investigate the effect of tanshinone IIA on the Janus­activated kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, which is associated with cardiac dysfunction during ischemia/reperfusion. The results demonstrated that tanshinone IIA protected myocardial cells from hypoxia/ischemia­induced injury in vitro and recovered decreased cell viability due to activation of the JAK2/STAT3 pathway, with 10 µM tanshinone IIA exhibiting the most potent protective effects. Flow cytometric analysis revealed that tanshinone IIA reversed the apoptotic aggravation induced by JAK2/STAT3 inhibitors following hypoxic ischemia. However, JAK2 inhibitors promoted the myocardial protective effect of tanshinone IIA from hypoxic­ischemic injury. Furthermore, tanshinone IIA and JAK2/STAT3 inhibitors in combination augmented the protection of myocardial cells from apoptosis induced by ischemia/reperfusion preconditioning in vivo. In conclusion, the results of the present study indicated that JAK2/STAT3 inhibitors may enhance the protective effect of tanshinone IIA on cardiac myocytes from hypoxic ischemia-induced injury, therefore suggesting that JAK2/STAT3 inhibitors may have a potential application in combination therapies with tanshinone IIA.


Assuntos
Abietanos/farmacologia , Janus Quinases/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Janus Quinases/antagonistas & inibidores , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Fatores de Transcrição STAT/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...