Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(48): 27159-27170, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34852365

RESUMO

Inorganic solid-state lithium-metal batteries could be the next-generation batteries owing to their non-flammability and higher specific energy density. Many research efforts have been devoted to improving the ionic conductivity of inorganic solid electrolytes. For a wide range of electrolytes including liquid and solid polymer electrolytes, an independent measurement or calculation of both electrolyte conductivity and diffusion coefficient is often time-consuming and challenging. As a result, Nernst-Einstein's relation has been used to relate the ionic conductivity to ionic diffusivity after the determination of either parameter. Although Nernst-Einstein's relation has been used for different electrolytes, we demonstrate in this perspective that this relation is not directly transferable to describe the ionic mobility for many inorganic solid electrolytes. The fundamental physics of Nernst-Einstein's relation shows that the relationship between the diffusion coefficient and electrolyte conductivity is derived for ionic mobility in a viscous or a gaseous medium. This postulation contradicts state-of-the-art experimental studies measuring the mechanical behaviour of inorganic solid electrolytes, which show that inorganic solid electrolytes are usually brittle rather than viscoelastic at ambient room temperature. The measurement of loss tangent is required to justify the use of Nernst-Einstein's relation. The outcome of such measurement has two implications. First, if the loss tangent of inorganic solid electrolytes is less than unity in the range of batteries operating temperatures, the impacts of using Nernst-Einstein's relation in modelling the ionic mobility should be quantified. Secondly, if the measured loss tangent is comparable to that of solid polymers and lithium metal, inorganic solid electrolytes may behave in a viscoelastic manner as opposed to the brittle behaviour usually suggested.

2.
Phys Chem Chem Phys ; 23(14): 8200-8221, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33875989

RESUMO

The expansion of lithium-ion batteries from consumer electronics to larger-scale transport and energy storage applications has made understanding the many mechanisms responsible for battery degradation increasingly important. The literature in this complex topic has grown considerably; this perspective aims to distil current knowledge into a succinct form, as a reference and a guide to understanding battery degradation. Unlike other reviews, this work emphasises the coupling between the different mechanisms and the different physical and chemical approaches used to trigger, identify and monitor various mechanisms, as well as the various computational models that attempt to simulate these interactions. Degradation is separated into three levels: the actual mechanisms themselves, the observable consequences at cell level called modes and the operational effects such as capacity or power fade. Five principal and thirteen secondary mechanisms were found that are generally considered to be the cause of degradation during normal operation, which all give rise to five observable modes. A flowchart illustrates the different feedback loops that couple the various forms of degradation, whilst a table is presented to highlight the experimental conditions that are most likely to trigger specific degradation mechanisms. Together, they provide a powerful guide to designing experiments or models for investigating battery degradation.

3.
Phys Chem Chem Phys ; 21(41): 22740-22755, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31552951

RESUMO

Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries. The successful commercialisation of solid-state lithium batteries depends on understanding and addressing the bottlenecks limiting the cell performance under realistic operational conditions such as dynamic current profiles of different pulse amplitudes. This study focuses on experimental analysis and continuum modelling of cell behaviour under pulse operating conditions, with most model parameters estimated from experimental measurements. By using a combined impedance and distribution of relaxation times analysis, we show that charge transfer at both interfaces occurs between the microseconds and milliseconds timescale. We also demonstrate that a simplified set of governing equations, rather than the conventional Poisson-Nernst-Planck equations, are sufficient to reproduce the experimentally observed behaviour during pulse discharge, pulse charging and dynamic pulse. Our simulation results suggest that solid diffusion in bulk LiCoO2 is the performance limiting mechanism under pulse operating conditions, with increasing voltage loss for lower states of charge. If bulk electrode forms the positive electrode, improvement in the ionic conductivity of the solid electrolyte beyond 10-4 S cm-1 yields marginal overall performance gains due to this solid diffusion limitation. Instead of further increasing the electrode thickness or improving the ionic conductivity on their own, we propose a holistic model-based approach to cell design, in order to achieve optimum performance for known operating conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...