Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 3): 119061, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704011

RESUMO

Sludge is one of the primary reservoirs of microplastics (MPs), and the effects of MPs on subsequent sludge treatment raised attention. Given the entry pathways, MPs would exhibit different properties, but the entry pathway-dependent effect of MPs on sludge treatment performance and the fates of antibiotic resistance genes (ARGs), another high-risk emerging contaminant, were seldom documented. Herein, MPs with two predominant entry pathways, including wastewater-derived (WW-derived) and anaerobic digestion-introduced (AD-introduced), were used to investigate the effects on AD performance and ARGs abundances. The results indicated that WW-derived MPs, namely the MPs accumulated in sludge during the wastewater treatment process, exhibited significant inhibition on methane production by 22.8%-71.6%, while the AD-introduced MPs, being introduced in the sludge AD process, slightly increased the methane yield by 4.7%-17.1%. Meanwhile, MPs were responsible for promoting transmission of target ARGs, and polyethylene terephthalate MPs (PET-MPs) showed a greater promotion effect (0.0154-0.0936) than polyamide MPs (PA-MPs) (0.0013-0.0724). Compared to size, entry pathways and types played more vital roles on MPs influences. Investigation on mechanisms based on microbial community structure revealed characteristics (aging degree and types) of MPs determined the differences of AD performance and ARGs fates. WW-derived MPs with longer aging period and higher aging degree would release toxics and decrease the activities of microorganisms, resulting in the negative impact on AD performance. However, AD-introduced MPs with short aging period exhibited marginal impacts on AD performance. Furthermore, the co-occurrent network analysis suggested that the variations of potential host bacteria induced by MPs with different types and aging degree attributed to the dissemination of ARGs. Distinctively from most previous studies, the MPs with different sizes did not show remarkable effects on AD performance and ARGs fates. Our findings benefited the understanding of realistic environmental behavior and effect of MPs with different sources.


Assuntos
Metano , Microplásticos , Esgotos , Metano/metabolismo , Esgotos/microbiologia , Anaerobiose , Microplásticos/toxicidade , Eliminação de Resíduos Líquidos , Resistência Microbiana a Medicamentos/genética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Sci Total Environ ; 876: 162631, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36894093

RESUMO

Global energy issue raised the necessity to develop second-generation biofuels, and biorefinery of cellulosic biomass becomes a promising solution. Various pretreatments were used to overcome the cellulose nature of recalcitrance and improve the enzymatic digestibility, but the lack of mechanism understanding hindered the development of efficient and cost-effective technologies of cellulose utilization. Using structure-based analysis, we demonstrate that the improved hydrolysis efficiency caused by ultrasonication was ascribed to the changed cellulose properties rather than the increased dissolubility. Further, isothermal titration calorimetry (ITC) analysis suggested that enzymatic digestion of cellulose is an entropically favored reaction driven by hydrophobic forces other than an enthalpically favored reaction. The changes in cellulose properties and thermodynamic paramenters due to ultrasonication accounted for the improved accessibility. Ultrasonication-treated cellulose showed porous, rough and disordered morphology, accompanying with the loss of crystalline structure. Despite the unaffected unit cell structure, ultrasonication expanded the crystalline lattice by increasing grain sizes and average cross-sectional area, resulting in the transformation from cellulose I to cellulose II, with the decreased crystallinity, better hydrophilicity and increased enzymatic bioaccessibility. Furthermore, FTIR combined with two-dimensional correlation spectroscopy (2D-CoS) verified that the sequential shift of hydroxyl group and intramolecular/intermolecular hydrogen bonds, the functional groups governing cellulose crystal structure and stability, accounted for the ultrasonication-induced transition of cellulose crystalline structure. This study provides a comprehensive picture of cellulose structure and property response caused by mechanistic treatments and will open up avenues to develop novel pretreatments for efficient utilization.


Assuntos
Celulose , Celulose/química , Ligação de Hidrogênio , Biomassa , Hidrólise
3.
Sci Total Environ ; 869: 161799, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36709893

RESUMO

Sludge is among the most important reservoirs of antibiotic resistance genes (ARGs), which would cause potential environmental risks with the sludge utilization. Currently, anaerobic digestion (AD) is effective to simultaneously realize the resource recovery and pollutants removal, including antibiotic resistance genes (ARGs), and various pretreatments are used to enhance the performance. Recently, plentiful publications have focused on the effects of pretreatment on ARGs removal, but the contradictory results are often obtained, and a comprehensive understanding of the research progress and mechanisms is essential. This study summarizes various pretreatment techniques for improving AD efficiency and ARGs reduction, investigates promising performance in ARGs removal when pretreatments combined with AD, and analyzes the potential mechanisms accounting for ARGs fates. The results showed that although thermal hydrolysis pretreatment showed the best performance in ARGs reduction during the pretreatment process, the significant rebound of ARGs would occur in the subsequent AD process. Conversely, ozone pretreatment and alkali pretreatment had no significant effect on ARGs abundance in the pretreatment stage, but could enhance ARGs removal by 15.6-24.3 % in the subsequent AD. Considering the efficiency and economic effectiveness, free nitrous acid pretreatment would be a promising and feasible option, which could enhance methane yield and ARGs removal by up to 27 % and 74.5 %, respectively. Currently, the factors determining ARGs fates during pretreatment and AD processes included the shift of microbial community, mobile genetic elements (MGEs), and environmental factors. A comprehensive understanding of the relationship between the fate of ARGs and pretreatment technologies could be helpful for systematically evaluating various pretreatments and facilitating the development of emerging and effective pretreatment techniques. Moreover, given the effectiveness, economic efficiency and environmental safety, we called for the applications of modern analysis approaches such as metagenomic and machine learning on the optimization of pretreatment conditions and revealing underlying mechanisms.


Assuntos
Antibacterianos , Esgotos , Antibacterianos/farmacologia , Anaerobiose , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Digestão
4.
Sci Total Environ ; 862: 160892, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521594

RESUMO

The wide occurrence of microplastics (MPs) and nanoparticles resulted in their inevitable coexistence in environment. However, the joint effects of these two types of particulate emerging contaminants on denitrification have seldomly been investigated. Herein, non-biodegradable polyvinyl chloride, polypropylene, polyethylene and biodegradable polyhydroxyalkanoate (PHA) MPs were chosen to perform the co-occurrent effects with nano copper oxide (nano-CuO). Both the nano-CuO and MPs inhibited the denitrification process, and biodegradable PHA-MPs showed severer inhibition than non-biodegradable MPs. However, the presence of MPs significantly alleviated the inhibition of nano-CuO, suggesting an antagonistic effect. Other than MPs decreasing copper ion release from nano-CuO, MPs and nano-CuO formed agglomerations and induced lower levels of oxidative stress compared to individual exposure. Transcriptome analysis indicated that the co-occurrent MPs and nano-CuO induced different regulation on denitrifying genes (e. g. nar and nor) compared to individual ones. Also, the expressions of genes involved in denitrification-associated metabolic pathways, including glycolysis and NADH electron transfer, were down-regulated by nano-CuO or MPs, but exhibiting recovery under the co-occurrent conditions. This study firstly discloses the antagonistic effect of nano-CuO and MPs on environmental process, and these findings will benefit the systematic evaluation of MPs environmental behavior and co-occurrent risk with other pollutants.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos , Plásticos , Poluentes Ambientais/análise , Desnitrificação , Bactérias , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 805: 150158, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34537708

RESUMO

Using current wastewater treatment technologies, it can be challenging to remove the emerging contaminants (ECs) present in kitchen wastewater (KW) of complex compositions and high organic content. In this study, biochar, derived from straw, was modified as an adsorbent to remove ECs such as bisphenol A (BPA), tetracycline (TC) and ofloxacin (OFL) from a complex KW system. An alkali-modified biochar, having larger specific surface areas and stronger hydrophobicity, was found to exhibit a higher adsorption capacity, with more than 95% of the target ECs being removed. Indeed, in a static operation mode, the alkali-modified biochar had maximum adsorption capacities of 71.43, 101.01 and 54.05 mg/g for BPA, TC, and OFL, respectively. The adsorption kinetics and isotherms models indicated that the adsorption process was controlled by chemisorption, as well as the monolayer adsorption of contaminants onto the external and internal surfaces of the alkali-modified biochar. The adsorption of TC and OFL was significantly affected by the initial pH values of KW. However, the presence of different environmental factors (COD, NH4+ and PO43-) had little effects on the adsorption of the contaminants. The alkali-modified biochar was further tested in a fixed-bed column where the maximum dynamic adsorption capacities for BPA and OFL were 55 and 45 mg/g, representing about 75% and 83% of the static saturated adsorption capacities. These findings can be of major significance for the application of alkali-modified biochar in the removal of ECs from complex KW systems.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Álcalis , Antibacterianos , Compostos Benzidrílicos , Carvão Vegetal , Cinética , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...