Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mass Spectrom Adv Clin Lab ; 26: 1-6, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36065325

RESUMO

Introduction: The use of illicitly manufactured synthetic opioids, specifically fentanyl and its analogs, has escalated exponentially in the United States over the last decade. Due to the targeted nature of drug detection methods in clinical laboratories and the ever-evolving list of synthetic opioids of concern, alternative analytical approaches are needed. Methods: Using the fentanyl analog screening (FAS) kit produced by the Centers for Disease Control and Prevention (CDC), we developed a liquid chromatography-high resolution mass spectrometry (LC-HRMS) synthetic opioid spectral library and data acquisition method using information dependent acquisition of product ion spectra. Chromatographic retention times, limits of detection and matrix effects, in urine and serum, for the synthetic opioids in the FAS kit (n = 150) were established. All urine and serum specimens sent to a clinical toxicology laboratory for comprehensive drug testing in 2019 (n = 856) and 2021 (n = 878) were analyzed with the FAS LC-HRMS library to determine the prevalence of fentanyl analogs and other synthetic opioids, retrospectively (2019) and prospectively (2021). Results: The limit of detection (LOD) of each opioid ranged from 1 to 10 ng/mL (median, 2.5 ng/mL) in urine and 0.25-2.5 ng/mL (median, 0.5 ng/mL) in serum. Matrix effects ranged from -79 % to 86 % (median, -37 %) for urine, following dilution and direct analysis, and -80 % to 400 % (median, 0 %) for serum, following protein precipitation. The prevalence of fentanyl/fentanyl analogs in serum samples increased slightly from 2019 to 2021 while it remained the same in urine. There were only 2 samples identified that contained a fentanyl analog without the co-occurrence of fentanyl or fentanyl metabolites. Analysis of the established MS/MS spectral library revealed characteristic fragmentation patterns in most fentanyl analogs, which can be used for structure elucidation and drug identification of future analogs. Conclusions: The LC-HRMS method was capable of detecting fentanyl analogs in routine samples sent for comprehensive drug testing. The method can be adapted to accommodate testing needs for the evolving opioid epidemic.

2.
Forensic Toxicol ; 35(1): 20-32, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28286577

RESUMO

In 2014, NM-2201 (CBL-2201), a novel synthetic cannabinoid (SC), was detected by Russian and United States laboratories. It was already added to the scheduled drugs list in Japan, Sweden and Germany. Unfortunately, no human metabolism data are currently available, making it challenging to confirm its intake because all previous investigated SCs were extensively metabolized. The present study aims to recommend appropriate marker metabolites by investigating NM-2201 metabolism in human hepatocytes and confirm the results in authentic human urine specimens. For the metabolic stability assay, 1 µM NM-2201 was incubated in human liver microsomes (HLMs) for up to 1 h; for metabolite profiling, 10 µM of NM-2201 was incubated in human hepatocytes for 3 h. Two authentic urine specimens from NM-2201 positive cases were analyzed after ß-glucuronidase hydrolysis. Metabolite identification in hepatocyte samples and urine specimens was achieved with high-resolution mass spectrometry via information-dependent acquisition. NM-2201 was quickly metabolized in HLMs with an 8.0 min half-life. In human hepatocyte incubation samples, a total of thirteen NM-2201 metabolites were identified, generated mainly from ester hydrolysis and further hydroxylation, oxidative defluorination and subsequent glucuronidation. M13 (5-fluoro PB-22 3-carboxyindole) was the major metabolite. In the urine specimens, the parent drug NM-2201 was not detected; M13 was the predominant metabolite after ß-glucuronidase hydrolysis. Therefore, based on our study, we recommend the M13 as a suitable urinary marker metabolite for confirming NM-2201 and/or 5F-PB-22 intake.

3.
Forensic Toxicol ; 34: 256-267, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547265

RESUMO

Since 2013, a new drugs-of-abuse trend attempts to bypass drug legislation by marketing isomers of scheduled synthetic cannabinoids (SCs), e.g., FUBIMINA (BIM-2201) and THJ-2201. It is much more challenging to confirm a specific isomer's intake and distinguish it from its structural analog because the isomers and their major metabolites usually have identical molecular weights and display the same product ions. Here, we investigated isomers FUBIMINA and THJ-2201 and propose strategies to distinguish their consumption. THJ-2201 was scheduled in the US, Japan, and Europe; however, FUBIMINA is easily available on the Internet. We previously investigated THJ-2201 metabolism in human hepatocytes, but human FUBIMINA metabolism is unknown. We aim to characterize FUBIMINA metabolism in human hepatocytes, recommend optimal metabolites to confirm its consumption, and propose strategies to distinguish between intakes of FUBIMINA and THJ-2201. FUBIMINA (10 µM) was incubated in human hepatocytes for 3 h, and metabolites were characterized with high-resolution mass spectrometry (HR-MS). We identified 35 metabolites generated by oxidative defluorination, further carboxylation, hydroxylation, dihydrodiol formation, glucuronidation, and their combinations. We recommend 5'-OH-BIM-018 (M34), BIM-018 pentanoic acid (M33), and BIM-018 pentanoic acid dihydrodiol (M7) as FUBIMINA specific metabolites. THJ-2201 produced specific metabolite markers 5'-OH-THJ-018 (F26), THJ-018 pentanoic acid (F25), and hydroxylated THJ-2201 (F13). Optimized chromatographic conditions to achieve different retention times and careful selection of specific product ion spectra enabled differentiation of isomeric metabolites, in this case FUBIMINA from THJ-2201. Our HR-MS approach should be applicable for differentiating future isomeric SCs, which is especially important when different isomers have different legal status.

4.
AAPS J ; 18(6): 1489-1499, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27495118

RESUMO

Carfentanil is an ultra-potent synthetic opioid. No human carfentanil metabolism data are available. Reportedly, Russian police forces used carfentanil and remifentanil to resolve a hostage situation in Moscow in 2002. This alleged use prompted interest in the pharmacology and toxicology of carfentanil in humans. Our study was conducted to identify human carfentanil metabolites and to assess carfentanil's metabolic clearance, which could contribute to its acute toxicity in humans. We used Simulations Plus's ADMET Predictor™ and Molecular Discovery's MetaSite™ to predict possible metabolite formation. Both programs gave similar results that were generally good but did not capture all metabolites seen in vitro. We incubated carfentanil with human hepatocytes for up to 1 h and analyzed samples on a Sciex 3200 QTRAP mass spectrometer to measure parent compound depletion and extrapolated that to represent intrinsic clearance. Pooled primary human hepatocytes were then incubated with carfentanil up to 6 h and analyzed for metabolite identification on a Sciex 5600+ TripleTOF (QTOF) high-resolution mass spectrometer. MS and MS/MS analyses elucidated the structures of the most abundant metabolites. Twelve metabolites were identified in total. N-Dealkylation and monohydroxylation of the piperidine ring were the dominant metabolic pathways. Two N-oxide metabolites and one glucuronide metabolite were observed. Surprisingly, ester hydrolysis was not a major metabolic pathway for carfentanil. While the human liver microsomal system demonstrated rapid clearance by CYP enzymes, the hepatocyte incubations showed much slower clearance, possibly providing some insight into the long duration of carfentanil's effects.


Assuntos
Analgésicos Opioides/metabolismo , Fentanila/análogos & derivados , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Fentanila/metabolismo , Humanos , Espectrometria de Massas em Tandem
5.
AAPS J ; 18(2): 455-64, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26810398

RESUMO

In 2014, FDU-PB-22 and FUB-PB-22, two novel synthetic cannabinoids, were detected in herbal blends in Japan, Russia, and Germany and were quickly added to their scheduled drugs list. Unfortunately, no human metabolism data are currently available, making it challenging to confirm their intake. The present study aims to identify appropriate analytical markers by investigating FDU-PB-22 and FUB-PB-22 metabolism in human hepatocytes and confirm the results in authentic urine specimens. For metabolic stability, 1 µM FDU-PB-22 and FUB-PB-22 was incubated with human liver microsomes for up to 1 h; for metabolite profiling, 10 µM was incubated with human hepatocytes for 3 h. Two authentic urine specimens from FDU-PB-22 and FUB-PB-22 positive cases were analyzed after ß-glucuronidase hydrolysis. Metabolite identification in hepatocyte samples and urine specimens was accomplished by high-resolution mass spectrometry using information-dependent acquisition. Both FDU-PB-22 and FUB-PB-22 were rapidly metabolized in HLM with half-lives of 12.4 and 11.5 min, respectively. In human hepatocyte samples, we identified seven metabolites for both compounds, generated by ester hydrolysis and further hydroxylation and/or glucuronidation. After ester hydrolysis, FDU-PB-22 and FUB-PB-22 yielded the same metabolite M7, fluorobenzylindole-3-carboxylic acid (FBI-COOH). M7 and M6 (hydroxylated FBI-COOH) were the major metabolites. In authentic urine specimens after ß-glucuronidase hydrolysis, M6 and M7 also were the predominant metabolites. Based on our study, we recommend M6 (hydroxylated FBI-COOH) and M7 (FBI-COOH) as suitable urinary markers for documenting FDU-PB-22 and/or FUB-PB-22 intake.


Assuntos
Canabinoides/química , Canabinoides/urina , Preparações de Plantas/química , Preparações de Plantas/urina , Canabinoides/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Preparações de Plantas/farmacologia
6.
Clin Chem ; 62(1): 157-69, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26430074

RESUMO

BACKGROUND: Despite increasing prevalence of novel psychoactive substances, no human metabolism data are currently available, complicating laboratory documentation of intake in urine samples and assessment of the drugs' pharmacodynamic, pharmacokinetic, and toxicological properties. In 2014, THJ-018 and THJ-2201, synthetic cannabinoid indazole analogs of JWH-018 and AM-2201, were identified, with the National Forensic Laboratory Information System containing 220 THJ-2201 reports. Because of numerous adverse events, the Drug Enforcement Administration listed THJ-2201 as Schedule I in January 2015. METHODS: We used high-resolution mass spectrometry (HR-MS) (TripleTOF 5600(+)) to identify optimal metabolite markers after incubating 10 µmol/L THJ-018 and THJ-2201 in human hepatocytes for 3 h. Data were acquired via full scan and information-dependent acquisition triggered product ion scans with mass defect filter. In silico metabolite predictions were performed with MetaSite and compared with metabolites identified in human hepatocytes. RESULTS: Thirteen THJ-018 metabolites were detected, with the major metabolic pathways being hydroxylation on the N-pentyl chain and further oxidation or glucuronidation. For THJ-2201, 27 metabolites were observed, predominantly oxidative defluorination plus subsequent carboxylation or glucuronidation, and glucuronidation of hydroxylated metabolites. Dihydrodiol formation on the naphthalene moiety was observed for both compounds. MetaSite prediction matched well with THJ-018 hepatocyte metabolites but underestimated THJ-2201 oxidative defluorination. CONCLUSIONS: With HR-MS for data acquisition and processing, we characterized THJ-018 and THJ-2201 metabolism in human hepatocytes and suggest appropriate markers for laboratories to identify THJ-018 and THJ-2201 intake and link observed adverse events to these new synthetic cannabinoids.


Assuntos
Canabinoides/análise , Canabinoides/metabolismo , Hepatócitos/metabolismo , Espectrometria de Massas , Canabinoides/síntese química , Canabinoides/química , Humanos , Estrutura Molecular
7.
Drug Test Anal ; 8(8): 779-91, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26331297

RESUMO

AH-7921 (3,4-dichloro-N-[(1-dimethylamino)cyclohexylmethyl]benzamide) is a new synthetic opioid and has led to multiple non-fatal and fatal intoxications. To comprehensively study AH-7921 metabolism, we assessed human liver microsome (HLM) metabolic stability, determined AH-7921's metabolic profile after human hepatocytes incubation, confirmed our findings in a urine case specimen, and compared results to in silico predictions. For metabolic stability, 1 µmol/L AH-7921 was incubated with HLM for up to 1 h; for metabolite profiling, 10 µmol/L was incubated with pooled human hepatocytes for up to 3 h. Hepatocyte samples were analyzed by liquid chromatography quadrupole/time-of-flight high-resolution mass spectrometry (MS). High-resolution full scan MS and information-dependent acquisition MS/MS data were analyzed with MetabolitePilot™ (SCIEX) using multiple data processing algorithms. The presence of AH-7921 and metabolites was confirmed in the urine case specimen. In silico prediction of metabolite structures was performed with MetaSite™ (Molecular Discovery). AH-7921 in vitro half-life was 13.5 ± 0.4 min. We identified 12 AH-7921 metabolites after hepatocyte incubation, predominantly generated by demethylation, less dominantly by hydroxylation, and combinations of different biotransformations. Eleven of 12 metabolites identified in hepatocytes were found in the urine case specimen. One metabolite, proposed to be di-demethylated, N-hydroxylated and glucuronidated, eluted after AH-7921 and was the most abundant metabolite in non-hydrolyzed urine. MetaSite™ correctly predicted the two most abundant metabolites and the majority of observed biotransformations. The two most dominant metabolites after hepatocyte incubation (also identified in the urine case specimen) were desmethyl and di-desmethyl AH-7921. Together with the glucuronidated metabolites, these are likely suitable analytical targets for documenting AH-7921 intake. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Analgésicos Opioides/metabolismo , Benzamidas/metabolismo , Drogas Desenhadas/metabolismo , Hepatócitos/metabolismo , Analgésicos Opioides/química , Analgésicos Opioides/urina , Benzamidas/química , Benzamidas/urina , Linhagem Celular , Simulação por Computador , Drogas Desenhadas/química , Drogas Desenhadas/farmacocinética , Hepatócitos/efeitos dos fármacos , Humanos , Metaboloma , Modelos Biológicos
8.
AAPS J ; 17(3): 660-77, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25721194

RESUMO

Whereas non-fluoropentylindole/indazole synthetic cannabinoids appear to be metabolized preferably at the pentyl chain though without clear preference for one specific position, their 5-fluoro analogs' major metabolites usually are 5-hydroxypentyl and pentanoic acid metabolites. We determined metabolic stability and metabolites of N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA) and 5-fluoro-AB-PINACA (5F-AB-PINACA), two new synthetic cannabinoids, and investigated if results were similar. In silico prediction was performed with MetaSite (Molecular Discovery). For metabolic stability, 1 µmol/L of each compound was incubated with human liver microsomes for up to 1 h, and for metabolite profiling, 10 µmol/L was incubated with pooled human hepatocytes for up to 3 h. Also, authentic urine specimens from AB-PINACA cases were hydrolyzed and extracted. All samples were analyzed by liquid chromatography high-resolution mass spectrometry on a TripleTOF 5600+ (AB SCIEX) with gradient elution (0.1% formic acid in water and acetonitrile). High-resolution full-scan mass spectrometry (MS) and information-dependent acquisition MS/MS data were analyzed with MetabolitePilot (AB SCIEX) using different data processing algorithms. Both drugs had intermediate clearance. We identified 23 AB-PINACA metabolites, generated by carboxamide hydrolysis, hydroxylation, ketone formation, carboxylation, epoxide formation with subsequent hydrolysis, or reaction combinations. We identified 18 5F-AB-PINACA metabolites, generated by the same biotransformations and oxidative defluorination producing 5-hydroxypentyl and pentanoic acid metabolites shared with AB-PINACA. Authentic urine specimens documented presence of these metabolites. AB-PINACA and 5F-AB-PINACA produced suggested metabolite patterns. AB-PINACA was predominantly hydrolyzed to AB-PINACA carboxylic acid, carbonyl-AB-PINACA, and hydroxypentyl AB-PINACA, likely in 4-position. The most intense 5F-AB-PINACA metabolites were AB-PINACA pentanoic acid and 5-hydroxypentyl-AB-PINACA.


Assuntos
Hepatócitos/metabolismo , Indazóis/metabolismo , Microssomos Hepáticos/metabolismo , Valina/análogos & derivados , Algoritmos , Cromatografia Líquida/métodos , Simulação por Computador , Humanos , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo , Valina/metabolismo
9.
Drug Test Anal ; 7(3): 187-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24827428

RESUMO

N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a new synthetic cannabinoid in herbal incense products discussed on Internet drug user forums and identified in police seizures. To date, there are no STS-135 clinical or in vitro studies identifying STS-135 metabolites. However, characterizing STS-135 metabolism is critical because synthetic cannabinoid metabolites can possess pharmacological activity and parent compounds are rarely detectable in urine. To characterize the metabolite profile, human hepatocytes were incubated with 10 µmol/L STS-135 for up to 3 h. High-resolution mass spectrometry with software-assisted data mining identified 29 STS-135 metabolites. Less than 25% of STS-135 parent compound remained after 3 h incubation. Primary metabolites were generated by mono-, di- or trihydroxylation with and without ketone formation, dealkylation, and oxidative defluorination of N-fluoropentyl side chain or possible oxidation to carboxylic acid, some of them further glucuronidated. Hydroxylations occurred mainly on the aliphatic adamantane ring and less commonly on the N-pentyl side chain. At 1 h, phase I metabolites predominated, while at 3 h, phase II metabolites were present in higher amounts. The major metabolites were monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21), both hydroxylated on the adamantane system. Moreover, metabolic stability of STS-135 (1 µmol/L) was assessed in human liver microsomes experiments. The in vitro half-life of STS-135 was 3.1 ± 0.2 min and intrinsic clearance (CLint ) was 208.8 mL · min(-1) · kg(-1) . This is the first report characterizing STS-135 hepatic metabolic pathways. These data provide potential urinary targets to document STS-135 intake in clinical and forensic settings and potential candidates for pharmacological testing.


Assuntos
Adamantano/análogos & derivados , Drogas Desenhadas/metabolismo , Hepatócitos/metabolismo , Indóis/metabolismo , Microssomos Hepáticos/metabolismo , Adamantano/metabolismo , Criopreservação , Humanos , Hidroxilação , Redes e Vias Metabólicas , Oxirredução
10.
Bioanalysis ; 6(11): 1471-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25046048

RESUMO

BACKGROUND: Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results: With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. CONCLUSION: For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods.


Assuntos
Canabinoides/metabolismo , Drogas Desenhadas/metabolismo , Espectrometria de Massas/métodos , Hepatócitos/metabolismo , Humanos
11.
Bioanalysis ; 6(9): 1187-200, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24946920

RESUMO

BACKGROUND: Since 2008, synthetic cannabinoids are major new designer drugs of abuse. They are extensively metabolized and excreted in urine, but limited human metabolism data are available. As there are no reports on the metabolism of RCS-8, a scheduled phenylacetylindole synthetic cannabinoid with an N-cyclohexylethyl moiety, we investigated metabolism of this new designer drug by human hepatocytes and high resolution MS. METHODS: After human hepatocyte incubation with RCS-8, samples were analyzed on a TripleTOF 5600+ mass spectrometer with time-of-flight survey scan and information-dependent acquisition triggered product ion scans. Data mining of the accurate mass full scan and product ion spectra employed different data processing algorithms. RESULTS & CONCLUSION: More than 20 RCS-8 metabolites were identified, products of oxidation, demethylation, and glucuronidation. Major metabolites and targets for analytical methods were hydroxyphenyl RCS-8 glucuronide, a variety of hydroxycyclohexyl-hydroxyphenyl RCS-8 glucuronides, hydroxyphenyl RCS-8, as well as the demethyl-hydroxycyclohexyl RCS-8 glucuronide.


Assuntos
Canabinoides/metabolismo , Cicloexanos/química , Hepatócitos/metabolismo , Indóis/metabolismo , Canabinoides/síntese química , Canabinoides/química , Cicloexanos/metabolismo , Hepatócitos/química , Humanos , Indóis/síntese química , Indóis/química , Espectrometria de Massas
12.
Anal Bioanal Chem ; 406(6): 1763-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24518903

RESUMO

BACKGROUND: PB-22 (1-pentyl-8-quinolinyl ester-1H-indole-3-carboxylic acid) and 5F-PB-22 (1-(5-fluoropentyl)-8-quinolinyl ester-1H-indole-3-carboxylic acid) are new synthetic cannabinoids with a quinoline substructure and the first marketed substances with an ester bond linkage. No human metabolism data are currently available, making it difficult to document PB-22 and 5F-PB-22 intake from urine analysis, and complicating assessment of the drugs' pharmacodynamic and toxicological properties. METHODS: We incubated 10 µmol/l PB-22 and 5F-PB-22 with pooled cryopreserved human hepatocytes up to 3 h and analyzed samples on a TripleTOF 5600+ high-resolution mass spectrometer. Data were acquired via TOF scan, followed by information-dependent acquisition triggered product ion scans with mass defect filtering (MDF). The accurate mass full scan MS and MS/MS metabolite datasets were analyzed with multiple data processing techniques, including MDF, neutral loss and product ion filtering. RESULTS: The predominant metabolic pathway for PB-22 and 5F-PB-22 was ester hydrolysis yielding a wide variety of (5-fluoro)pentylindole-3-carboxylic acid metabolites. Twenty metabolites for PB-22 and 22 metabolites for 5F-PB-22 were identified, with the majority generated by oxidation with or without glucuronidation. For 5F-PB-22, oxidative defluorination occurred forming PB-22 metabolites. Both compounds underwent epoxide formation followed by internal hydrolysis and also produced a cysteine conjugate. CONCLUSION: Human hepatic metabolic profiles were generated for PB-22 and 5F-PB-22. Pentylindole-3-carboxylic acid, hydroxypentyl-PB-22 and PB-22 pentanoic acid for PB-22, and 5'-fluoropentylindole-3-carboxylic acid, PB-22 pentanoic acid and the hydroxy-5F-PB-22 metabolite with oxidation at the quinoline system for 5F-PB-22 are likely the best targets to incorporate into analytical methods for urine to document PB-22 and 5F-PB-22 intake.


Assuntos
Canabinoides/metabolismo , Hepatócitos/metabolismo , Canabinoides/química , Células Cultivadas , Humanos , Hidrólise , Indóis/química , Indóis/metabolismo , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
13.
Clin Chem ; 59(11): 1638-48, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014837

RESUMO

BACKGROUND: Since the mid-2000s synthetic cannabinoids have been abused as recreational drugs, prompting scheduling of these substances in many countries. To circumvent legislation, manufacturers constantly market new compounds; [1-(5-fluoropentyl)indol-3-yl]-(2,2,3,3-tetramethylcyclopropyl)methanone (XLR-11), the fluorinated UR-144 analog, is one of the most recent and widely abused drugs, and its use is now linked with acute kidney injury. Our goal was to investigate XLR-11 metabolism for identification of major urinary targets in analytical methods and to clarify the origin of metabolites when one or more parent synthetic cannabinoids can be the source. METHODS: We incubated 10 µmol/L XLR-11 with pooled human hepatocytes and sampled after 1 and 3 h. Samples were analyzed by high-resolution mass spectrometry with a TOF scan followed by information-dependent acquisition triggered product ion scans with dynamic background subtraction and mass defect filters. Scans were thoroughly data mined with different data processing algorithms (Metabolite Pilot 1.5). RESULTS: XLR-11 underwent phase I and II metabolism, producing more than 25 metabolites resulting from hydroxylation, carboxylation, hemiketal and hemiacetal formation, internal dehydration, and further glucuronidation of some oxidative metabolites. No sulfate or glutathione conjugation was observed. XLR-11 also was defluorinated, forming UR-144 metabolites. On the basis of mass spectrometry peak areas, we determined that the major metabolites were 2'-carboxy-XLR-11, UR-144 pentanoic acid, 5-hydroxy-UR-144, hydroxy-XLR-11 glucuronides, and 2'-carboxy-UR-144 pentanoic acid. Minor metabolites were combinations of the biotransformations mentioned above, often glucuronidated. CONCLUSIONS: These are the first data defining major urinary targets of XLR-11 metabolism that could document XLR-11 intake in forensic and clinical investigations.


Assuntos
Canabinoides/metabolismo , Drogas Desenhadas/metabolismo , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Espectrometria de Massas/métodos
14.
AAPS J ; 15(4): 1091-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913126

RESUMO

Since the federal authorities scheduled the first synthetic cannabinoids, JWH-018 and JWH-073, new synthetic cannabinoids were robustly marketed. N-(1-Adamantyl)-1-pentylindazole-3-carboxamide (AKB-48), also known as APINACA, was recently observed in Japanese herbal smoking blends. The National Forensic Laboratory Information System registered 443 reports of AKB-48 cases in the USA from March 2010 to January 2013. In May 2013, the Drug Enforcement Administration listed AKB-48 as a Schedule I drug. Recently, AKB-48 was shown to have twice the CB1 receptor binding affinity than CB2. These pharmacological effects and the difficulty in detecting the parent compound in urine highlight the importance of metabolite identification for developing analytical methods for clinical and forensic investigations. Using human hepatocytes and TripleTOF mass spectrometry, we identified 17 novel phase I and II AKB-48 metabolites, products of monohydroxylation, dihydroxylation, or trihydroxylation on the aliphatic adamantane ring or N-pentyl side chain. Glucuronide conjugation of some mono- and dihydroxylated metabolites also occurred. Oxidation and dihydroxylation on the adamantane ring and N-pentyl side chain formed a ketone. More metabolites were identified after 3 h of incubation than at 1 h. For the first time, we present a AKB-48 metabolic scheme obtained from human hepatocytes and high-resolution mass spectrometry. These data are needed to develop analytical methods to identify AKB-48 consumption in clinical and forensic testing.


Assuntos
Canabinoides/análise , Canabinoides/metabolismo , Hepatócitos/metabolismo , Espectrometria de Massas/métodos , Humanos
15.
Curr Drug Metab ; 7(8): 897-911, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17168690

RESUMO

Etoposide (VP-16), a DNA topoisomerase II poison widely used as an antineoplastic agent is also known to cause leukemia. One of its major metabolic pathways involves O-demethylation to etoposide catechol (etoposide-OH) by cytochrome P450 3A4 (CYP3A4). The catechol metabolite can undergo sequential one- and two-electron oxidations to form etoposide semi-quinone (etoposide-SQ) and etoposide quinone (etoposide-Q), respectively, which have both been implicated as cytotoxic metabolites. However, etoposide-Q is known to react with glutathione (GSH), which can protect DNA from oxidative damage by this reactive metabolite. In this study, etoposide-Q was reacted with GSH and the two etoposide-GSH conjugates were characterized. The major conjugate was etoposide-OH-6'-SG and the minor product was etoposide-OH-2'-SG. Etoposide-OH-6'-SG, which arose from Michael addition of GSH to etoposide-Q, was characterized by mass spectrometry and 2-D NMR. It was identified as the sole product from in vitro metabolism experiments using recombinant human CYP3A4 or liver microsomes incubated with etoposide in the presence of GSH. Etoposide-OH-6'-SG was also detected from incubations of etoposide-OH and GSH alone. Therefore, the presence of etoposide-OH, which can be formed from etoposide metabolism by CYP3A4, is essential for formation of the GSH conjugate. The oxidation of etoposide-OH to a quinone intermediate is likely the precursor in the formation of etoposide-OH-6'-SG.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa/metabolismo , Antineoplásicos Fitogênicos/metabolismo , Cromatografia Líquida , Citocromo P-450 CYP3A , Etoposídeo/química , Etoposídeo/metabolismo , Glutationa/química , Humanos , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microssomos Hepáticos/metabolismo
16.
Clin Cancer Res ; 10(9): 2977-85, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15131033

RESUMO

PURPOSE: The purpose of this research was to determine inter- and intrapatient differences in the pharmacokinetic profiles of etoposide and its genotoxic catechol metabolite during conventional multiple-day dosing of etoposide in pediatric patients. EXPERIMENTAL DESIGN: Seven pediatric patients with various malignancies received etoposide at a dose of 100 mg/m(2) i.v. over 1 h daily for 5 days. Blood samples were taken at selected time points on days 1 and 5. Plasma and protein-free plasma concentrations of etoposide and etoposide catechol were determined using a validated liquid chromatography/tandem mass spectrometry assay. Pharmacokinetic parameters of both etoposide and etoposide catechol were calculated using the WinSAAM modeling program developed at NIH. RESULTS: The mean maximum concentration (C(max)) for total (0.262 +/- 0.107 micro g/ml) and free catechol (0.0186 +/- 0.0082 micro g/ml) on day 5 were higher than the mean C(max) for total (0.114 +/- 0.028 micro g/ml) and free catechol (0.0120 +/- 0.0091 micro g/ml) on day 1. The mean area under the plasma concentration-time curve (AUC)(24h) for total (105.4 +/- 49.1 micro g.min/ml) and free catechol (4.89 +/- 2.23 micro g x min/ml) on day 5 were much greater (P < 0.05) than those for total (55.9 +/- 16.1 micro g x min/ml) and free catechol (3.04 +/- 1.04 micro g x min/ml) on day 1. In contrast, the AUC(24h) for etoposide was slightly lower on day 5 than on day 1. CONCLUSIONS: The C(max) and AUC(24h) for etoposide catechol were significantly higher on day 5 than on day 1. This suggests that metabolism of etoposide to its catechol metabolite increases in pediatric patients receiving multiple-day bolus etoposide infusions. These findings may be relevant to future reduction of the risk of leukemia as a treatment complication, because etoposide and etoposide catechol are both genotoxins.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Etoposídeo/farmacocinética , Neoplasias/tratamento farmacológico , Adolescente , Antineoplásicos Fitogênicos/sangue , Antineoplásicos Fitogênicos/uso terapêutico , Área Sob a Curva , Catecóis/sangue , Criança , Etoposídeo/sangue , Etoposídeo/uso terapêutico , Feminino , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/metabolismo , Humanos , Infusões Intravenosas , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/metabolismo , Masculino , Neoplasias/metabolismo , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...