Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(13): 20423-20439, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266132

RESUMO

Widely used in three-dimensional (3D) modeling, reverse engineering and other fields, point cloud registration aims to find the translation and rotation matrix between two point clouds obtained from different perspectives, and thus correctly match the two point clouds. As the most common point cloud registration method, ICP algorithm, however, requires a good initial value, not too large transformation between the two point clouds, and also not too much occlusion; Otherwise, the iteration would fall into a local minimum. To solve this problem, this paper proposes an ICP registration algorithm based on the local features of point clouds. With this algorithm, a robust and efficient 3D local feature descriptor (density, curvature and normal angle, DCA) is firstly designed by combining the density, curvature, and normal information of the point clouds, then based on the feature description, the correspondence between the point clouds and also the initial registration result are found, and finally, the aforementioned result is used as the initial value of ICP to achieve fine tuning of the registration result. The experimental results on public data sets show that the improved ICP algorithm boosts good registration accuracy and robustness, and a fast running speed as well.

2.
Sensors (Basel) ; 19(7)2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30935129

RESUMO

The identification and monitoring of buildings from remotely sensed imagery are of considerable value for urbanization monitoring. Two outstanding issues in the detection of changes in buildings with composite structures and relief displacements are heterogeneous appearances and positional inconsistencies. In this paper, a novel patch-based matching approach is developed using densely connected conditional random field (CRF) optimization to detect building changes from bi-temporal aerial images. First, the bi-temporal aerial images are combined to obtain change information using an object-oriented technique, and then semantic segmentation based on a deep convolutional neural network is used to extract building areas. With the change information and extracted buildings, a graph-cuts-based segmentation algorithm is applied to generate the bi-temporal changed building proposals. Next, in the bi-temporal changed building proposals, corner and edge information are integrated for feature detection through a phase congruency (PC) model, and the structural feature descriptor, called the histogram of orientated PC, is used to perform patch-based roof matching. We determined the final change in buildings by gathering matched roof and bi-temporal changed building proposals using co-refinement based on CRF, which were further classified as "newly built," "demolished", or "changed". Experiments were conducted with two typical datasets covering complex urban scenes with diverse building types. The results confirm the effectiveness and generality of the proposed algorithm, with more than 85% and 90% in overall accuracy and completeness, respectively.

3.
Sensors (Basel) ; 18(4)2018 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-29587371

RESUMO

In this work, a novel building change detection method from bi-temporal dense-matching point clouds and aerial images is proposed to address two major problems, namely, the robust acquisition of the changed objects above ground and the automatic classification of changed objects into buildings or non-buildings. For the acquisition of changed objects above ground, the change detection problem is converted into a binary classification, in which the changed area above ground is regarded as the foreground and the other area as the background. For the gridded points of each period, the graph cuts algorithm is adopted to classify the points into foreground and background, followed by the region-growing algorithm to form candidate changed building objects. A novel structural feature that was extracted from aerial images is constructed to classify the candidate changed building objects into buildings and non-buildings. The changed building objects are further classified as "newly built", "taller", "demolished", and "lower" by combining the classification and the digital surface models of two periods. Finally, three typical areas from a large dataset are used to validate the proposed method. Numerous experiments demonstrate the effectiveness of the proposed algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...