Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1344716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384270

RESUMO

Urinary tract infections (UTIs) are a common health issue affecting individuals worldwide. Recurrent urinary tract infections (rUTI) pose a significant clinical challenge, with limited understanding of the underlying mechanisms. Recent research suggests that the urobiome, the microbial community residing in the urinary tract, may play a crucial role in the development and recurrence of urinary tract infections. However, the specific virulence factor genes (VFGs) driven by urobiome contributing to infection recurrence remain poorly understood. Our study aimed to investigate the relationship between urobiome driven VFGs and recurrent urinary tract infections. By analyzing the VFGs composition of the urinary microbiome in patients with rUTI compared to a control group, we found higher alpha diversity in rUTI patients compared with healthy control. And then, we sought to identify specific VFGs features associated with infection recurrence. Specifically, we observed an increased abundance of certain VGFs in the recurrent infection group. We also associated VFGs and clinical data. We then developed a diagnostic model based on the levels of these VFGs using random forest and support vector machine analysis to distinguish healthy control and rUIT, rUTI relapse and rUTI remission. The diagnostic accuracy of the model was assessed using receiver operating characteristic curve analysis, and the area under the ROC curve were 0.83 and 0.75. These findings provide valuable insights into the complex interplay between the VFGs of urobiome and recurrent urinary tract infections, highlighting potential targets for therapeutic interventions to prevent infection recurrence.

2.
AoB Plants ; 11(6): plz075, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871614

RESUMO

Tubby-like proteins (TLPs) are ubiquitous in eukaryotes and function in abiotic stress tolerance of some plants. Cassava (Manihot esculenta Crantz) is a high-yield starch root crop and has a high tolerance to poor soil conditions and abiotic stress. However, little is known about TLP gene characteristics and their expression in cassava. We identified cassava TLP genes, MeTLPs, and further analysed structure, duplication, chromosome localization and collinearity, cis-acting elements in the promoter regions and expression patterns of MeTLPs, and three-dimensional structure of the encoded proteins MeTLPs. In conclusion, there is a MeTLP family containing 13 members, which are grouped into A and C subfamilies. There are 11 pairs of MeTLPs that show the duplication which took place between 10.11 and 126.69 million years ago. Two MeTLPs 6 and 9 likely originate from one gene in an ancestral species, may be common ancestors for other MeTLPs and would most likely not be eligible for ubiquitin-related protein degradation because their corresponding proteins (MeTLPs 6 and 9) have no the F-box domain in the N-terminus. MeTLPs feature differences in the number from TLPs in wheat, apple, Arabidopsis, poplar and maize, and are highlighted by segmental duplication but more importantly by the chromosomal collinearity with potato StTLPs. MeTLPs are at least related to abiotic stress tolerance in cassava. However, the subtle differences in function among MeTLPs are predictable partly because of their differential expression profiles, which are coupled with various cis­acting elements existing in the promoter regions depending on genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...