Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Shock ; 62(1): 139-145, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546380

RESUMO

ABSTRACT: Introduction: Intestinal flora and the translocation of its products, such as muramyl dipeptide (MDP), are common causes of sepsis. MDP is a common activator of the intracellular pattern recognition receptor NOD2, and MDP translocation can cause inflammatory damage to the small intestine and systemic inflammatory responses in rats. Therefore, this study investigated the effects of MDP on the intestinal mucosa and distant organs during sepsis and the role of the NOD2/AMPK/LC3 pathway in MDP-induced mitochondrial dysfunction in the intestinal epithelium. Methods: Fifty male Sprague Dawley rats were randomly divided into five treatment groups: lipopolysaccharide (LPS) only, 1.5 and 15 mg/kg MDP+LPS, and 1.5 and 15 mg/kg MDP+short-peptide enteral nutrition (SPEN)+LPS. The total caloric intake was the same per group. The rats were euthanized 24 h after establishing the model, and peripheral blood and small intestinal mucosal and lung tissues were collected. Results: Compared to the LPS group, both MDP+LPS groups had aggravated inflammatory damage to the intestinal mucosal and lung tissues, increased IL-6 and MDP production, increased NOD2 expression, decreased AMPK and LC3 expression, increased mitochondrial reactive oxygen species production, and decreased mitochondrial membrane potential. Compared to the MDP+LPS groups, the MDP+SPEN+LPS groups had decreased IL-6 and MDP production, increased AMPK and LC3 protein expression, and protected mitochondrial and organ functions. Conclusions: MDP translocation reduced mitochondrial autophagy by regulating the NOD2/AMPK/LC3 pathway, causing mitochondrial dysfunction. SPEN protected against MDP-induced impairment of intestinal epithelial mitochondrial function during sepsis.


Assuntos
Acetilmuramil-Alanil-Isoglutamina , Mucosa Intestinal , Mitocôndrias , Proteína Adaptadora de Sinalização NOD2 , Ratos Sprague-Dawley , Animais , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Masculino , Ratos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteína Adaptadora de Sinalização NOD2/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Sepse/metabolismo , Interleucina-6/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Inflamação/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
J Cancer Res Clin Oncol ; 146(8): 1941-1951, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32447486

RESUMO

PURPOSE: Currently, the routine screening program has insufficient capacity for the early diagnosis of lung cancer. Therefore, a type of chitosan-molecular beacon (CS-MB) probe was developed to recognize the miR-155-5p and image the lung cancer cells for the early diagnosis. METHODS: Based on the molecular beacon (MB) technology and nanotechnology, the CS-MB probe was synthesized self-assembly. There are four types of cells-three kinds of animal models and one type of histopathological sections of human lung cancer were utilized as models, including A549, SPC-A1, H446 lung cancer cells, tumor-initiating cells (TICs), subcutaneous and lung xenografts mice, and lox-stop-lox(LSL) K-ras G12D transgenic mice. The transgenic mice dynamically displayed the process from normal lung tissues to atypical hyperplasia, adenoma, carcinoma in situ, and adenocarcinoma. The different miR-155-5p expression levels in these cells and models were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The CS-MB probe was used to recognize the miR-155-5p and image the lung cancer cells by confocal microscopy in vitro and by living imaging system in vivo. RESULTS: The CS-MB probe could be used to recognize the miR-155-5p and image the lung cancer cells significantly in these cells and models. The fluorescence intensity trends detected by the CS-MB probe were similar to the expression levels trends of miR-155 tested by qRT-PCR. Moreover, the fluorescence intensity showed an increasing trend with the tumor progression in the transgenic mice model, and the occurrence and development of lung cancer were dynamically monitored by the differen fluorescence intensity. In addition, the miR-155-5p in human lung cancer tissues could be detected by the miR-155-5p MB. CONCLUSION: Both in vivo and in vitro experiments demonstrated that the CS-MB probe could be utilized to recognize the miR-155-5p and image the lung cancer cells. It provided a novel experimental and theoretical basis for the early diagnosis of the disease. Also, the histopathological sections of human lung cancer research laid the foundation for subsequent preclinical studies. In addition, different MBs could be designed to detect other miRNAs for the early diagnosis of other tumors.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , MicroRNAs/análise , Células A549 , Animais , Quitosana/química , Detecção Precoce de Câncer/métodos , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Camundongos Transgênicos , MicroRNAs/biossíntese , MicroRNAs/genética , Imagem Molecular/métodos , Sondas Moleculares/química , Nanotecnologia
3.
Drug Deliv ; 25(1): 1974-1983, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30621480

RESUMO

Lung cancer is still the most common cancer globally. Early screening remains the key to improve the prognosis of patients. There is currently a lack of specific and sensitive methods for early screening of lung cancer. In recent years, studies have found that microRNA plays an important role in the occurrence and development of lung cancer and become a biological target in the early diagnosis of lung cancer. In this study, lung cancer cells, subcutaneous xenografts of lung cancer in nude mice, and Lox-Stop-lox K-ras G12D transgenic mice were used as models. The transgenic mice displayed the dynamic processes from normal lung tissue to atypical hyperplasia, adenomas, carcinoma in situ and lung adenocarcinoma. It was found that miR-155 and somatostatin receptor 2 (SSTR2) were expressed in all the disease stages of transgenic mice. Through molecular beacon (MB) technology and nanotechnology, chitosan-molecular beacon (CS-MB) nanoparticles and targeted octreotide (OCT) were conjugated and synthesized. The octreotide-conjugated chitosan-molecular beacon nanoparticles (CS-MB-OCT) can specifically bind to SSTR2 expressed by the lung cancer cells to achieve the goal of identification of lung cancer cells and imaging miR-155 in vivo and in vitro. Fluorescence imaging at different disease stages of lung cancer in Lox-Stop-lox K-ras G12D transgenic mice was performed, and could dynamically monitor the occurrence and development of lung cancer by different fluorescence intensity ranges. The current research, in turn, provides new idea, new method, and new technology for the early screening of lung cancer.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Neoplasias Pulmonares/diagnóstico por imagem , MicroRNAs/biossíntese , Imagem Molecular/métodos , Nanopartículas/química , Octreotida/química , Receptores de Somatostatina/biossíntese , Células A549 , Animais , Detecção Precoce de Câncer , Citometria de Fluxo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , Camundongos Transgênicos , Microscopia Confocal , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Gastroenterology ; 153(1): 277-291.e19, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28315323

RESUMO

BACKGROUND & AIMS: Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. METHODS: We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from KrasG12D/+/Trp53R172H/+/Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. RESULTS: In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels of 5-HT to be increased in human PDAC tissues compared with non-tumor pancreatic tissues, and PDAC cell lines compared with non-transformed pancreatic cells. Incubation of PDAC cell lines with 5-HT increased proliferation and prevented apoptosis. Agonists of HTR2B, but not other 5-HT receptors, promoted proliferation and prevented apoptosis of PDAC cells. Knockdown of HTR2B in PDAC cells, or incubation of cells with HTR2B inhibitors, reduced their growth as xenograft tumors in mice. We observed a correlation between 5-HT and glycolytic flux in PDAC cells; levels of metabolic enzymes involved in glycolysis, the phosphate pentose pathway, and hexosamine biosynthesis pathway increased significantly in PDAC cells following 5-HT stimulation. 5-HT stimulation led to formation of the HTR2B-LYN-p85 complex, which increased PI3K-Akt-mTOR signaling and the Warburg effect by increasing protein levels of MYC and HIF1A. Administration of SB204741 to KPC mice slowed growth and metabolism of established pancreatic tumors and prolonged survival of the mice. CONCLUSIONS: Human PDACs have increased levels of 5-HT, and PDAC cells increase expression of its receptor, HTR2B. These increases allow for tumor glycolysis under metabolic stress and promote growth of pancreatic tumors and PDAC xenograft tumors in mice.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Serotonina/metabolismo , Idoso , Animais , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/química , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Inativação Gênica , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Indóis/uso terapêutico , Ácido Láctico/biossíntese , Masculino , Camundongos , Pessoa de Meia-Idade , Monoaminoxidase/análise , Transplante de Neoplasias , Pâncreas/química , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor 5-HT2B de Serotonina/genética , Serotonina/análise , Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Transdução de Sinais , Estresse Fisiológico , Serina-Treonina Quinases TOR/metabolismo , Análise Serial de Tecidos , Transcriptoma , Triptofano Hidroxilase/análise , Ureia/análogos & derivados , Ureia/uso terapêutico , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...