Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 13(4): 1699-1710, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37139420

RESUMO

Deconvolution of potential drug targets of the central nervous system (CNS) is particularly challenging because of the complicated structure and function of the brain. Here, a spatiotemporally resolved metabolomics and isotope tracing strategy was proposed and demonstrated to be powerful for deconvoluting and localizing potential targets of CNS drugs by using ambient mass spectrometry imaging. This strategy can map various substances including exogenous drugs, isotopically labeled metabolites, and various types of endogenous metabolites in the brain tissue sections to illustrate their microregional distribution pattern in the brain and locate drug action-related metabolic nodes and pathways. The strategy revealed that the sedative-hypnotic drug candidate YZG-331 was prominently distributed in the pineal gland and entered the thalamus and hypothalamus in relatively small amounts, and can increase glutamate decarboxylase activity to elevate γ-aminobutyric acid (GABA) levels in the hypothalamus, agonize organic cation transporter 3 to release extracellular histamine into peripheral circulation. These findings emphasize the promising capability of spatiotemporally resolved metabolomics and isotope tracing to help elucidate the multiple targets and the mechanisms of action of CNS drugs.

2.
Talanta ; 235: 122804, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517662

RESUMO

Identifying the writing sequence of seals and signatures in documents is often performed and difficult to resolve in forensic determination. Morphological and physical-chemical analysis methods are often limited by the destructive nature of samples, a high signal response strength and specific materials. Mass spectrometry imaging (MSI) has been used as an alternative method because it can generate molecular images from many surfaces and produce rich chemical information. Herein, we developed a sequence identification method by coupling an air flow-assisted desorption electrospray ionization (AFADESI)-MSI system with a chemometric analysis, which can holistically and directly analyse document samples under ambient, moderate and selectable conditions and maintain the original appearance of the paper documents after sampling. By integrating principal component analysis (PCA) and the partial least squares discriminant analysis (PLS-DA), equivocal point analysis can be objectively performed, where knowing the components of the seal or signature is not necessary to identify the sequence. In total, 28 prepared samples with known sequences and two original blind test samples were analysed. One prepared sample was analysed in negative ionization mode, and other samples were inferred in positive ionization mode. All writing sequences were in accordance with the actual case. The writing sequence of the blind testing of the original samples was correctly identified. This study provided a convenient, objective and quasi-nondestructive method to investigate the sequence differences among equivocal document samples and is promising for providing an alternative method for the sequence identification of seals and signatures in questionable documents.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Redação , Análise Discriminante , Análise dos Mínimos Quadrados , Espectrometria de Massas , Análise de Componente Principal
3.
Anal Chem ; 93(17): 6746-6754, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33890766

RESUMO

Metabolic networks and their dysfunction in the brain are closely associated with central nervous function and many psychogenic diseases. Thus, it is of utmost importance to develop a high-throughput imaging method for metabolic network mapping. Here, we developed a metabolic network mapping method to discover the metabolic contexts and alterations with spatially resolved information from the microregion of the brain by ambient-air flow-assisted desorption electrospray ionization mass spectrometry imaging and metabolomics analysis, which can be performed without any chemical derivatization, labels, or complex sample pretreatment. This method can map hundreds of different polar functional metabolites involved in multiple metabolic pathways, including not only neurotransmitters but also purines, organic acids, polyamines, cholines, and carbohydrates, in the rat brain. These high-coverage metabolite profile and microregional distribution information constitute complex networks that regulate advanced functions in the central nervous system. Moreover, this methodology was further used to discover not only the dysregulated metabolites but also the brain microregions involved in the pathology of a scopolamine-treated Alzheimer's model. Furthermore, this methodology was demonstrated to be a powerful visualizing tool that could offer novel insight into the metabolic events and provide spatial information about these events in central nervous system diseases.


Assuntos
Metabolômica , Espectrometria de Massas por Ionização por Electrospray , Animais , Encéfalo , Redes e Vias Metabólicas , Neurotransmissores , Ratos
4.
Theranostics ; 10(6): 2621-2630, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194824

RESUMO

The development of improved or targeted drugs that discriminate between normal and tumor tissues is the key therapeutic issue in cancer research. However, the development of an analytical method with a high accuracy and sensitivity to achieve quantitative assessment of the tumor targeting of anticancer drugs and even intratumor heterogeneous distribution of these drugs at the early stages of drug research and development is a major challenge. Mass spectrometry imaging is a label-free molecular imaging technique that provides spatial-temporal information on the distribution of drugs and metabolites in organisms, and its application in the field of pharmaceutical development is rapidly increasing. Methods: The study presented here accurately quantified the distribution of paclitaxel (PTX) and its prodrug (PTX-R) in whole-body animal sections based on the virtual calibration quantitative mass spectrometry imaging (VC-QMSI) method, which is label-free and does not require internal standards, and then applied this technique to evaluate the tumor targeting efficiency in three treatment groups-the PTX-injection treatment group, PTX-liposome treatment group and PTX-R treatment group-in nude mice bearing subcutaneous A549 xenograft tumors. Results: These results indicated that PTX was widely distributed in multiple organs throughout the dosed body in the PTX-injection group and the PTX-liposome group. Notably, in the PTX-R group, both the prodrug and metabolized PTX were mainly distributed in the tumor tissue, and this group showed a significant difference compared with the PTX-liposome group, the relative targeting efficiency of PTX-R group was increased approximately 50-fold, leading to substantially decreased systemic toxicities. In addition, PTX-R showed a significant and specific accumulation in the poorly differentiated intratumor area and necrotic area. Conclusion: This method was demonstrated to be a reliable, feasible and easy-to-implement strategy to quantitatively map the absorption, distribution, metabolism and excretion (ADME) of a drug in the whole-body and tissue microregions and could therefore evaluate the tumor-targeting efficiency of anticancer drugs to predict drug efficacy and safety and provide key insights into drug disposition and mechanisms of action and resistance. Thus, this strategy could significantly facilitate the design and optimization of drugs at the early stage of drug research and development.


Assuntos
Antineoplásicos/farmacocinética , Neoplasias/tratamento farmacológico , Paclitaxel/farmacocinética , Pró-Fármacos/farmacocinética , Células A549 , Animais , Antineoplásicos/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Paclitaxel/administração & dosagem , Pró-Fármacos/administração & dosagem
5.
Talanta ; 202: 198-206, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31171170

RESUMO

Investigation of the in vivo drug action and metabolic differences of epimer drugs is challenging. Whole-body MSI analysis can visually present the stereoscopic distribution of molecules related to the interaction of drugs and organisms, and can provide more comprehensive organ-specific profiling information. Herein, we developed a whole-body spatially-resolved imaging metabolomics method based on an air flow-assisted ionisation desorption electrospray ionisation (AFADESI)-MSI system coupled with a high-resolution mass spectrometer and highly discriminating imaging software. The epimeric sedative-hypnotic drug candidates YZG-331 and YZG-330 were selected as examples, and rats administered normal or high oral doses were used. By performing multivariate statistical data-mining on the combined MSI data, organ-specific differential ions were screened. By comparing the variations in the relative contents of the drugs, their metabolites, and endogenous neurotransmitters throughout whole-body tissue sections of the rats, rich information that could potentially explain the more significant sedative-hypnotic effects of YZG-330 compared to YZG-331 was obtained. Such as the increased ratio of gamma-aminobutyric acid in the brain and stomach of the rats (0.25, 0.47, 0.68, 0.30, and 0.89 for the control and YZG-331-H, YZG-330-H, YZG-331-L, and YZG-330-L, respectively) were interesting. This study provided a convenient and visual method to investigate in vivo molecular metabolic differences and provide insight towards a better understanding of the pharmacodynamic mechanisms of these sedative-hypnotic drug-candidates.


Assuntos
Adenosina/análogos & derivados , Metabolômica , Adenosina/análise , Adenosina/metabolismo , Animais , Masculino , Espectrometria de Massas , Ratos , Software
6.
J Mass Spectrom ; 54(5): 378-388, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30742348

RESUMO

Reference samples are essential for mass spectrometric method optimization, data quality control, and target analyte quantitation. However, it is highly challenging to prepare an ideal homogeneous, standard-spiked tissue sample for mass spectrometry imaging (MSI) research. Herein, we present a standard-spiked 3D biomimetic tissue model fabricated with native cells, homogenate matrix, and biocompatible polymer. Unlike traditional homogenized tissue surrogates or those constructed with "on-tissue" or "under-tissue" micropipetting strategies, this simulated tissue shares both structural integrity of cells and homogeneous properties of matrix. As a result, analyte standards could undergo more in-depth incorporation and has a more comparable native status with a real tissue. Series of tissue sections made from the 3D tissue model were proven to be feasible and useful for the parameter optimization, analyte quantitation, and calibration curve fitting for the air-flow assisted desorption electrospray ionization MSI. Additionally, by analyzing the quality control model sections, we proposed a median principal component score calibration and demonstrated that this method can normalize instrumental fluctuations to stable levels in a large-scale untargeted MSI experiments for the reliable metabolomic biomarker discovery. Thus, these results indicated that the standard-spiked 3D biomimetic tissue has convincing significance in MSI analysis.

7.
Anal Chem ; 91(4): 2838-2846, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30636407

RESUMO

It is highly challenging to quantitatively map multiple analytes in biotissues without specific chemical labeling. Quantitative mass spectrometry imaging (QMSI) has this potential but still poses technical issues for its variant ionization efficiency across a complicated, heterogeneous biomatrices. Herein, a self-developed air-flow-assisted desorption electrospray ionization (AFADESI) is introduced to present a proof of concept method, virtual calibration (VC) QMSI. This method screens and utilizes analyte response-related endogenous metabolite ions from each mass spectrum as native internal standards (IS). Through machine-learning-based regression and clustering, tissue-specific ionization variation can be automatically recognized, predicted, and normalized region by region or pixel by pixel. Therefore, the quantity of analytes can be accurately mapped across highly structural biosamples including whole body, kidney, brain, tumor, etc. VC-QMSI has the advantages of simple sample preparation without laborious isotopic IS synthesis, extrapolation for those unknown tissues or regions without previous investigation, and automatic spatial recognition without histological guidance. This strategy is suitable for mass spectrometry imaging using a variety of in situ ionization techniques. It is believed that VC-QMSI has wide applicability for drug candidate's discovery, molecular mechanism elucidation, biomarker validation, and clinical diagnosis.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Química Encefálica , Calibragem , Análise por Conglomerados , Descoberta de Drogas , Rim/química , Aprendizado de Máquina , Camundongos Endogâmicos BALB C , Neoplasias/química , Farmacocinética , Análise de Regressão , Imagem Corporal Total/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...