Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 179: 144-153, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38471252

RESUMO

The treatment and recycling of discarded crystalline silicon photovoltaic modules (c-Si PV modules) has become a research focus, but few research have paid attention to the standardized treatment of c-Si PV module's fluorinated backsheet. Improper management of fluorinated backsheet can pose ecological and human health risks. Therefore, this study presents a novel method for processing the backsheet. The proposed approach entailed the utilization of ethanol (CH3CH2OH) to separate the backsheet from the PV module. Subsequently, the separated backsheet underwent decomposition using an alkaline ethanol (NaOH-CH3CH2OH) solution. Finally, the backsheet was recovered in the form of terephthalic acid (TPA) with a purity of 97.47 %. This recovered TPA can then serve as a valuable raw material for producing new backsheets, fostering a closed-loop material circulation. Experimental results demonstrate that immersing the PV module in a 75 % CH3CH2OH-H2O solution at a temperature of 343 K for 30 min achieved 100 % separation of the backsheet. Furthermore, subjecting the separated backsheet to a 60 min reaction in an NaOH-CH3CH2OH solution with a temperature of 343 K and a NaOH concentration of 1.0 mol/L achieved complete decomposition. The reaction mechanism was analyzed through characterization methods such as SEM/EDS, NMR, FTIR and XRD. This method is efficient, non-toxic organic reagent-free and environmentally friendly, so it holds significant potential for further development in the field of c-Si PV module recycling.


Assuntos
Reciclagem , Silício , Etanol , Reciclagem/métodos , Silício/química , Hidróxido de Sódio , Temperatura
2.
Artigo em Inglês | MEDLINE | ID: mdl-38090823

RESUMO

Vocoder-based speech synthesis has become a promising technique to accommodate the demands of high-quality speech analysis, manipulation, and synthesis. However, most existing works focus on how to synthesize normal human voice with high signal-to-noise ratio, neglecting individuals' pathological voice disorder in speech interaction. In this work, we propose a non-linear voice repair vocoder for pathological vowels and sentences, which takes the pathological speech as input and generates high-quality repaired speech. Our approach is specifically designed to enhance the speech quality and intelligibility for individuals with voice disorders. We employ amplitude modulated-frequency modulated (AM-FM) and Teager energy operation techniques to enhance the quality of pitch and spectral envelope. To tackle the instability and fracture problem of pitch, we present spectral tracking algorithm, which not only avoids dramatic change in the edge of voice, but also reduces the errors of half-pitch. Furthermore, we design a spectral reconstruction algorithm, which can effectively rebuild the spectral structure by energy operation to accomplish spectral envelope repair. The proposed PVR-Vocoder shows exceptional performance in pathological voice intelligibility enhancement according to various quality measures including objective indicators, subjective evaluation, and spectrum observations.

3.
IEEE Trans Med Robot Bionics ; 4(1): 106-117, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35582700

RESUMO

Driven by the demand to largely mitigate nosocomial infection problems in combating the coronavirus disease 2019 (COVID-19) pandemic, the trend of developing technologies for teleoperation of medical assistive robots is emerging. However, traditional teleoperation of robots requires professional training and sophisticated manipulation, imposing a burden on healthcare workers, taking a long time to deploy, and conflicting the urgent demand for a timely and effective response to the pandemic. This paper presents a novel motion synchronization method enabled by the hybrid mapping technique of hand gesture and upper-limb motion (GuLiM). It tackles a limitation that the existing motion mapping scheme has to be customized according to the kinematic configuration of operators. The operator awakes the robot from any initial pose state without extra calibration procedure, thereby reducing operational complexity and relieving unnecessary pre-training, making it user-friendly for healthcare workers to master teleoperation skills. Experimenting with robotic grasping tasks verifies the outperformance of the proposed GuLiM method compared with the traditional direct mapping method. Moreover, a field investigation of GuLiM illustrates its potential for the teleoperation of medical assistive robots in the isolation ward as the Second Body of healthcare workers for telehealthcare, avoiding exposure of healthcare workers to the COVID-19.

4.
Sensors (Basel) ; 22(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35632308

RESUMO

Wireless Time-Sensitive Networking (WTSN) has emerged as a promising technology for Industrial Internet of Things (IIoT) applications. To meet the latency requirements of WTSN, wireless local area network (WLAN) such as IEEE 802.11 protocol with the time division multiple access (TDMA) mechanism is shown to be a practical solution. In this paper, we propose the RT-WiFiQA protocol with two novel schemes to improve the latency and reliability performance: real-time quality of service (RT-QoS) and fine-grained aggregation (FGA) for TDMA-based 802.11 systems. The RT-QoS is designed to guarantee the quality-of-service requirements of different traffic and to support the FGA mechanism. The FGA mechanism aggregates frames for different stations to reduce the physical layer transmission overhead. The trade-off between the reliability and FGA packet size is analyzed with numerical results. Specifically, we derive a critical threshold such that the FGA can achieve higher reliability when the aggregated packet size is smaller than the critical threshold. Otherwise, the non-aggregation scheme outperforms the FGA scheme. Extensive experiments are conducted on the commercial off-the-shelf 802.11 interface. The experiment results show that compared with the existing TDMA-based 802.11 system, the developed RT-WiFiQA protocol can achieve deterministic bounded real-time latency and greatly improves the reliability performance.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35024008

RESUMO

In industrial applications, the large comprehensive wireless channel impulse response (CIR) reference dataset, measured by National Institute of Standards and Technology (NIST), has been a useful tool for understanding propagation within factory environments. The NIST CIR reference dataset is obtained using a precision channel sounder instrument where transmitter and receiver are time-synchronized by two rubidium clocks. While the accuracy of the NIST CIRs is much higher than the CIRs measured by general commercial digital receiver, two types of system errors have been discovered within the dataset from the perspective of signal processing. These errors are significant for wireless localization, physical layer security, and related applications. To calibrate the CIR, two channel sounder error calibration methods (CSEC) is proposed: the CSEC based on phase compensation and carrier frequency offset recovery. Our results reveal that the CSEC method can improve the accuracy of the CIR to the accuracy that precise instruments cannot achieve. To demonstrate the consequence of these systemic errors, a case study involving physical layer authentication is investigated showing a marked improvement in authentication accuracy after the systemic errors in the dataset are removed. Moreover, the CSEC method may be used to correct other CIR datasets with similar systemic errors.

6.
IEEE J Biomed Health Inform ; 25(12): 4276-4288, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34018941

RESUMO

With the fourth revolution of healthcare, i.e., Healthcare 4.0, collaborative robotics is spilling out from traditional manufacturing and will blend into human living or working environments to deliver care services, especially telehealthcare. Because of the frequent and seamless interaction between robots and care recipients, it poses several challenges that require careful consideration: 1) the ability of the human to collaborate with the robots in a natural manner; and 2) the safety of the human collaborating with the robot. In this regard, we have proposed a proximity sensing solution based on the self-capacitive technology to provide an extended sense of touch for collaborative robots, allowing approach and contact measurement to enhance safe and natural human-robot collaboration. The modular design of our solution enables it to scale up to form a large-area sensing system. The sensing solution is proposed to work in two operation modes: the interaction mode and the safety mode. In the interaction mode, utilizing the ability of the sensor to localize the point of action, gesture command is used for robot manipulation. In the safety mode, the sensor enables the robot to actively avoid obstacles.


Assuntos
Robótica , Humanos , Pele , Tato , Local de Trabalho
7.
Sensors (Basel) ; 22(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35009690

RESUMO

Plant Factory is a newly emerging industry aiming at transforming crop production to an unprecedented model by leveraging industrial automation and informatics. However, today's plant factory and vertical farming industry are still in a primitive phase, and existing industrial cyber-physical systems are not optimal for a plant factory due to diverse application requirements on communication, computing and artificial intelligence. In this paper, we review use cases and requirements for future plant factories, and then dedicate an architecture that incorporates the communication and computing domains to plant factories with a preliminary proof-of-concept, which has been validated by both academic and industrial practices. We also call for a holistic co-design methodology that crosses the boundaries of communication, computing and artificial intelligence disciplines to guarantee the completeness of solution design and to speed up engineering implementation of plant factories and other industries sharing the same demands.


Assuntos
Inteligência Artificial , Indústrias , Comunicação , Previsões
8.
IEEE J Transl Eng Health Med ; 8: 1400510, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617197

RESUMO

As a senile chronic, progressive and currently incurable disease, dementia has an enormous impact on society and life quality of the elderly. The development of teleoperation technology has changed the traditional way of care delivery and brought a variety of novel applications for dementia care. In this paper, a telerobotic system is presented which gives the caregivers the capability of assisting dementia elderly remotely. The proposed system is composed of a dual-arm collaborative robot (YuMi) and a wearable motion capture device. The communication architecture is achieved by the robot operation system (ROS). The position-orientation data of the operator's hand are obtained and used to control the YuMi robot. Besides, a path-constrained mapping method is designed for motion trajectory tracking between the robot and the operator in the progress of teleoperation. Meanwhile, corresponding experiments are conducted to verify the performance of the trajectory tracking using the path-constrained mapping method. Results show that the position tracking deviation between the trajectory of the operator and the robot measured by dynamic time warping distance is 1.05 mm at the sampling frequency of 7.5 Hz. Moreover, the practicability of the proposed system was verified by teleoperating the YuMi robot to pick up a medicine bottle and further demonstrated by assisting an elderly woman in picking up a cup remotely. The proposed telerobotic system has potential utility for improving the life quality of dementia elderly and the care effect of their caregivers.

9.
IEEE J Biomed Health Inform ; 24(9): 2535-2549, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32340971

RESUMO

Powered by the technologies that have originated from manufacturing, the fourth revolution of healthcare technologies is happening (Healthcare 4.0). As an example of such revolution, new generation homecare robotic systems (HRS) based on the cyber-physical systems (CPS) with higher speed and more intelligent execution are emerging. In this article, the new visions and features of the CPS-based HRS are proposed. The latest progress in related enabling technologies is reviewed, including artificial intelligence, sensing fundamentals, materials and machines, cloud computing and communication, as well as motion capture and mapping. Finally, the future perspectives of the CPS-based HRS and the technical challenges faced in each technical area are discussed.


Assuntos
Inteligência Artificial , Procedimentos Cirúrgicos Robóticos , Computação em Nuvem , Atenção à Saúde , Humanos
10.
IEEE J Biomed Health Inform ; 24(7): 1940-1951, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32149701

RESUMO

Individuals, such as voice-related professionals, elderly people and smokers, are increasingly suffering from voice disorder, which implies the importance of pathological voice repair. Previous work on pathological voice repair only concerned about sustained vowel /a/, but multiple vowels repair is still challenging due to the unstable extraction of pitch and the unsatisfactory reconstruction of formant. In this paper, a multiple vowels repair based on pitch extraction and Line Spectrum Pair feature for voice disorder is proposed, which broadened the research subjects of voice repair from only single vowel /a/ to multiple vowels /a/, /i/ and /u/ and achieved the repair of these vowels successfully. Considering deep neural network as a classifier, a voice recognition is performed to classify the normal and pathological voices. Wavelet Transform and Hilbert-Huang Transform are applied for pitch extraction. Based on Line Spectrum Pair (LSP) feature, the formant is reconstructed. The final repaired voice is obtained by synthesizing the pitch and the formant. The proposed method is validated on Saarbrücken Voice Database (SVD) database. The achieved improvements of three metrics, Segmental Signal-to-Noise Ratio, LSP distance measure and Mel cepstral distance measure, are respectively 45.87%, 50.37% and 15.56%. Besides, an intuitive analysis based on spectrogram has been done and a prominent repair effect has been achieved.


Assuntos
Espectrografia do Som/métodos , Distúrbios da Voz/diagnóstico , Voz/fisiologia , Análise de Ondaletas , Idoso , Humanos , Redes Neurais de Computação
11.
IEEE J Biomed Health Inform ; 24(6): 1541-1549, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31751288

RESUMO

With the paradigm shift from hospital-centric healthcare to home-centric healthcare in Healthcare 4.0, healthcare robotics has become one of the fastest growing fields of robotics. The combination of robot capabilities with human intelligence, for example, telerobotics for home care, is gradually showing promising potentials. In this paper, the Home-TeleBot system, a generalized IoT-enabled telerobotic architecture designed to support home-centric healthcare system, is proposed. In particular, the implementation of it is realized by integrating human-motion-capture subsystem with robot-control subsystem. The dual-arm cooperative robot, YuMi, imitates human motion captured by a set of wearable inertial motion capture devices to complete tasks. The proposed approach using workspace mapping and path planning of robot manipulators, facilitates telerobot to execute tasks in a natural and human-like way. Based on the constant of proportionality calculated by comparing the human original workspace with the robot original workspace, the workspace mapping is achieved by making assumptions of the distance between end-effectors (human hands, robot's grippers) and shoulders. Additionally, robot manipulators' path is planned by setting virtual obstacles to constrain robot motion, which aims to improve the performance of robot's human-like motion. As a specific example of application, we apply the proposed architecture to a fetching task based on dual-arm motion capture and mapping for telerobotics in home care.


Assuntos
Serviços de Assistência Domiciliar , Internet das Coisas , Robótica , Humanos , Movimento , Robótica/instrumentação , Robótica/métodos , Extremidade Superior/fisiologia
12.
Sensors (Basel) ; 19(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783618

RESUMO

Gait analysis is an important assessment tool for analyzing vital signals collected from individuals and for providing physical information of the human body, and it is emerging in a diverse range of application scenarios, such as disease diagnosis, fall prevention, rehabilitation, and human-robot interaction. Herein, a kind of surface processed conductive rubber was designed and investigated to develop a pressure-sensitive insole to monitor planar pressure in a real-time manner. Due to a novel surface processing method, the pressure sensor was characterized by stable contact resistance, simple manufacturing, and high mechanical durability. In the experiments, it was demonstrated that the developed pressure sensors were easily assembled with the inkjet-printed electrodes and a flexible substrate as a pressure-sensitive insole while maintaining good sensing performance. Moreover, resistive signals were wirelessly transmitted to computers in real time. By analyzing sampled resistive data combined with the gait information monitored by a visual-based reference system based on machine learning method (k-Nearest Neighbor algorithm), the corresponding relationship between plantar pressure distribution and lower limb joint angles was obtained. Finally, the experimental validation of the ability to accurately divide gait into several phases was conducted, illustrating the potential application of the developed device in healthcare and robotics.

13.
IEEE Rev Biomed Eng ; 12: 34-71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30571646

RESUMO

Advances in flexible and stretchable electronics, functional nanomaterials, and micro/nano manufacturing have been made in recent years. These advances have accelerated the development of wearable sensors. Wearable sensors, with excellent flexibility, stretchability, durability, and sensitivity, have attractive application prospects in the next generation of personal devices for chronic disease care. Flexible and stretchable wearable sensors play an important role in endowing chronic disease care systems with the capability of long-term and real-time tracking of biomedical signals. These signals are closely associated with human body chronic conditions, such as heart rate, wrist/neck pulse, blood pressure, body temperature, and biofluids information. Monitoring these signals with wearable sensors provides a convenient and non-invasive way for chronic disease diagnoses and health monitoring. In this review, the applications of wearable sensors in chronic disease care are introduced. In addition, this review exploits a comprehensive investigation of requirements for flexibility and stretchability, and methods of nano-based enhancement. Furthermore, recent progress in wearable sensors-including pressure, strain, electrophysiological, electrochemical, temperature, and multifunctional sensors-is presented. Finally, opening research challenges and future directions of flexible and stretchable sensors are discussed.


Assuntos
Doença Crônica/terapia , Assistência de Longa Duração/tendências , Nanoestruturas/uso terapêutico , Dispositivos Eletrônicos Vestíveis/tendências , Doença Crônica/epidemiologia , Terapia por Exercício , Frequência Cardíaca/fisiologia , Humanos
14.
Micromachines (Basel) ; 9(11)2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400665

RESUMO

For industrial manufacturing, industrial robots are required to work together with human counterparts on certain special occasions, where human workers share their skills with robots. Intuitive human⁻robot interaction brings increasing safety challenges, which can be properly addressed by using sensor-based active control technology. In this article, we designed and fabricated a three-dimensional flexible robot skin made by the piezoresistive nanocomposite based on the need for enhancement of the security performance of the collaborative robot. The robot skin endowed the YuMi robot with a tactile perception like human skin. The developed sensing unit in the robot skin showed the one-to-one correspondence between force input and resistance output (percentage change in impedance) in the range of 0⁻6.5 N. Furthermore, the calibration result indicated that the developed sensing unit is capable of offering a maximum force sensitivity (percentage change in impedance per Newton force) of 18.83% N-1 when loaded with an external force of 6.5 N. The fabricated sensing unit showed good reproducibility after loading with cyclic force (0⁻5.5 N) under a frequency of 0.65 Hz for 3500 cycles. In addition, to suppress the bypass crosstalk in robot skin, we designed a readout circuit for sampling tactile data. Moreover, experiments were conducted to estimate the contact/collision force between the object and the robot in a real-time manner. The experiment results showed that the implemented robot skin can provide an efficient approach for natural and secure human⁻robot interaction.

15.
IEEE J Transl Eng Health Med ; 6: 2100510, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29805919

RESUMO

Surface electromyography signal plays an important role in hand function recovery training. In this paper, an IoT-enabled stroke rehabilitation system was introduced which was based on a smart wearable armband (SWA), machine learning (ML) algorithms, and a 3-D printed dexterous robot hand. User comfort is one of the key issues which should be addressed for wearable devices. The SWA was developed by integrating a low-power and tiny-sized IoT sensing device with textile electrodes, which can measure, pre-process, and wirelessly transmit bio-potential signals. By evenly distributing surface electrodes over user's forearm, drawbacks of classification accuracy poor performance can be mitigated. A new method was put forward to find the optimal feature set. ML algorithms were leveraged to analyze and discriminate features of different hand movements, and their performances were appraised by classification complexity estimating algorithms and principal components analysis. According to the verification results, all nine gestures can be successfully identified with an average accuracy up to 96.20%. In addition, a 3-D printed five-finger robot hand was implemented for hand rehabilitation training purpose. Correspondingly, user's hand movement intentions were extracted and converted into a series of commands which were used to drive motors assembled inside the dexterous robot hand. As a result, the dexterous robot hand can mimic the user's gesture in a real-time manner, which shows the proposed system can be used as a training tool to facilitate rehabilitation process for the patients after stroke.

16.
Sensors (Basel) ; 18(2)2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-29495252

RESUMO

Social applications play a very important role in people's lives, as users communicate with each other through social networks on a daily basis. This presents a challenge: How does one receive high-quality service from social networks at a low cost? Users can access different kinds of wireless networks from various locations. This paper proposes a user access management strategy based on network pricing such that networks can increase its income and improve service quality. Firstly, network price is treated as an optimizing access parameter, and an unascertained membership algorithm is used to make pricing decisions. Secondly, network price is adjusted dynamically in real time according to network load. Finally, selecting a network is managed and controlled in terms of the market economy. Simulation results show that the proposed scheme can effectively balance network load, reduce network congestion, improve the user's quality of service (QoS) requirements, and increase the network's income.

17.
Sensors (Basel) ; 17(11)2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29088123

RESUMO

Advancements in medical science and technology, medicine and public health coupled with increased consciousness about nutrition and environmental and personal hygiene have paved the way for the dramatic increase in life expectancy globally in the past several decades. However, increased life expectancy has given rise to an increasing aging population, thus jeopardizing the socio-economic structure of many countries in terms of costs associated with elderly healthcare and wellbeing. In order to cope with the growing need for elderly healthcare services, it is essential to develop affordable, unobtrusive and easy-to-use healthcare solutions. Smart homes, which incorporate environmental and wearable medical sensors, actuators, and modern communication and information technologies, can enable continuous and remote monitoring of elderly health and wellbeing at a low cost. Smart homes may allow the elderly to stay in their comfortable home environments instead of expensive and limited healthcare facilities. Healthcare personnel can also keep track of the overall health condition of the elderly in real-time and provide feedback and support from distant facilities. In this paper, we have presented a comprehensive review on the state-of-the-art research and development in smart home based remote healthcare technologies.


Assuntos
Serviços de Assistência Domiciliar , Idoso , Atenção à Saúde , Humanos , Telemedicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...