Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(6): 3890-3899, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38776245

RESUMO

Photodynamic therapy (PDT) and cannabidiol (CBD) have been explored for their potential in synergistic cancer treatment. In this study, we employed CBD oil as a lipid phase, encapsulated within AZB-I@Lec-T to create lipid-based nanoparticles. Here, CBD oil does two tasks: it acts as a pyroptosis agent to destroy liver cancer cells and as a lipid phase to dissolve the photosensitizer. It was expected that this system would offer synergistic therapy between CBD and PDT better than a single use of each treatment. With a series of in vitro experiments, the nanoparticles exhibited induced apoptosis in 68% of HepG2 cells treated with AZB-I@Lec-T@CBD and near-infrared (NIR)-light irradiation, reducing expression levels of antioxidant defense system genes. Furthermore, both components worked well in a submicromolar range when combined in our formulation. These results highlight the potential for amplifying primary cellular damage with the combination of PDT and CBD encapsulation, providing a promising therapeutic approach for liver cancer treatment guidelines.


Assuntos
Materiais Biocompatíveis , Compostos de Boro , Canabidiol , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Hepáticas , Teste de Materiais , Tamanho da Partícula , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Canabidiol/química , Canabidiol/farmacologia , Células Hep G2 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Compostos de Boro/química , Compostos de Boro/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Nanopartículas/química
2.
Sci Rep ; 14(1): 4436, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396088

RESUMO

The three-dimensional (3D) cell culture system is being employed more frequently to investigate cell engineering and tissue repair due to its close mimicry of in vivo microenvironments. In this study, we developed natural biomaterials, including hyaluronic acid, alginate, and gelatin, to mimic the creation of a 3D human mesenchymal stem cell (hMSC) extracellular environment and selected hydrogels with high proliferation capacity for 3D MSC culture. Human mesenchymal stem cells were encapsulated within hydrogels, and an investigation was conducted into the effects on cell viability and proliferation, stemness properties, and telomere activity compared to the 2D monolayer culture. Hydrogel characterization, cell proliferation, Live/Dead cell viability assay, gene expression, telomere relative length, and MSC stemness-related proteins by immunofluorescence staining were examined. The results showed that 3D alginate-hyaluronic acid (AL-HA) hydrogels increased cell proliferation, and the cells were grown as cellular spheroids within hydrogels and presented a high survival rate of 77.36% during the culture period of 14 days. Furthermore, the 3D alginate-hyaluronic acid (AL-HA) hydrogels increased the expression of stemness-related genes (OCT-4, NANOG, SOX2, and SIRT1), tissue growth and development genes (YAP and TAZ), and cell proliferation gene (Ki67) after culture for 14 days. Moreover, the telomere activity of the 3D MSCs was enhanced, as indicated by the upregulation of the human telomerase reverse transcriptase gene (hTERT) and the relative telomere length (T/S ratio) compared to the 2D monolayer culture. Altogether, these data suggest that the 3D alginate-hyaluronic acid (AL-HA) hydrogels could serve as a promising material for maintaining stem cell properties and might be a suitable carrier for tissue engineering proposals.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Hidrogéis/metabolismo , Ácido Hialurônico/metabolismo , Alginatos/metabolismo , Esferoides Celulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...