Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0305673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889113

RESUMO

Microbial fuel cells (MFCs) are innovative eco-friendly technologies that advance a circular economy by enabling the conversion of both organic and inorganic substances in wastewater to electricity. While conceptually promising, there are lingering questions regarding the performance and stability of MFCs in real industrial settings. To address this research gap, we investigated the influence of specific operational settings, regarding the hydraulic retention time (HRT) and organic loading rate (OLR) on the performance of MFCs used for treating sulfide-rich wastewater from a canned pineapple factory. Experiments were performed at varying hydraulic retention times (2 days and 4 days) during both low and high seasonal production. Through optimization, we achieved a current density generation of 47±15 mA/m2, a COD removal efficiency of 91±9%, and a sulfide removal efficiency of 86±10%. Microbiome analysis revealed improved MFC performance when there was a substantial presence of electrogenic bacteria, sulfide-oxidizing bacteria, and methanotrophs, alongside a reduced abundance of sulfate-reducing bacteria and methanogens. In conclusion, we recommend the following operational guidelines for applying MFCs in industrial wastewater treatment: (i) Careful selection of the microbial inoculum, as this step significantly influences the composition of the MFC microbial community and its overall performance. (ii) Initiating MFC operation with an appropriate OLR is essential. This helps in establishing an effective and adaptable microbial community within the MFCs, which can be beneficial when facing variations in OLR due to seasonal production changes. (iii) Identifying and maintaining MFC-supporting microbes, including those identified in this study, should be a priority. Keeping these microbes as an integral part of the system's microbial composition throughout the operation enhances and stabilizes MFC performance.


Assuntos
Fontes de Energia Bioelétrica , Sulfetos , Águas Residuárias , Águas Residuárias/microbiologia , Fontes de Energia Bioelétrica/microbiologia , Bactérias/metabolismo , Bactérias/genética , Resíduos Industriais/análise , Purificação da Água/métodos , Microbiota , Eliminação de Resíduos Líquidos/métodos
2.
Sci Total Environ ; 881: 163434, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37059144

RESUMO

This research investigates the effect of propionate-cultured sludge augmentation on methane (CH4) production from upflow anaerobic sludge blanket systems (UASB) treating fresh landfill leachate. In the study, both UASB reactors (UASB 1 and UASB 2) contained acclimatized seed sludge, and UASB 2 was augmented with propionate-cultured sludge. The organic loading rate (OLR) was varied between 120.6, 84.4, 48.2, and 12.0 gCOD/L·d. The experimental results indicated that the optimal OLR of UASB 1 (non-augmentation) was 48.2 gCOD/L·d, achieving the CH4 production of 4019 mL/d. Meanwhile, the optimal OLR of UASB 2 was 12.0 gCOD/L·d, achieving the CH4 yield of 6299 mL/d. The dominant bacterial community in the propionate-cultured sludge included the genera Methanothrix, Methanosaeta, Methanoculleus, Syntrophobacter, Smithella, Pelotomamulum, which are the VFA-degrading bacteria and methanogens responsible for unblocking the CH4 pathway bottleneck. Essentially, the novelty of this research lies in the use of propionate-cultured sludge to augment the UASB reactor in order to enhance CH4 production from fresh landfill leachate.


Assuntos
Esgotos , Poluentes Químicos da Água , Esgotos/microbiologia , Anaerobiose , Propionatos , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Bactérias/metabolismo , Metano/metabolismo
3.
Bioresour Technol ; 355: 127241, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35489571

RESUMO

This research investigates the use of propionate-cultured sludge to enhance methane (CH4) production and micropollutant biodegradation in biochemical methane potential (BMP) experiment treating landfill leachate. The experiments were carried out using non-acclimatized and acclimatized seed sludge with variable food to microorganism ratios of 1:1 and 1:2. Under the propionate-cultured sludge bioaugmentation, the concentrations of propionate-cultured sludge were varied between 10, 20, and 30 % (v/v). The acclimatized seed sludge exhibited high microbial abundance and diversity which promoted the CH4 production and micropollutant biodegradation. The modified Gompertz model indicated that the optimal condition was the acclimatized seed sludge with 30% (v/v) propionate-cultured sludge, achieving the lag time (λ), maximum CH4 production rate (Rmax), and maximum CH4 potential yield (Pmax) of 0.57 day, 17.35 NmL/h, and 140.58 NmL/g COD. The research novelty lies in the use of propionate-cultured sludge bioaugmentation in landfill leachate treatment to enhance CH4 production and micropollutant biodegradation.


Assuntos
Esgotos , Poluentes Químicos da Água , Anaerobiose , Reatores Biológicos , Metano/metabolismo , Propionatos , Esgotos/química , Poluentes Químicos da Água/análise
4.
Bioresour Technol ; 330: 124952, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33744739

RESUMO

This research investigates the treatment efficiency and greenhouse gas (GHG) emissions of non-floating and floating bed AS systems with acclimatized sludge treating landfill leachate. The GHGs under study included carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The non-floating and floating bed AS systems were operated in parallel with identical landfill leachate influent under different hydraulic retention time (HRT) conditions (24, 18, and 12 h). The experimental results showed that the treatment efficiency of organic compounds under 24 h HRT of both systems (90 - 98%) were insignificantly different, while the nutrient removal efficiency of both systems were between 54 and 98 %. The treatment efficiency of the floating bed AS system, despite shorter HRT, remained relatively unchanged due to an abundance of effective bacteria residing in the floating media. The CO2 emissions were insignificantly different between both AS systems under all HRT conditions (22 - 26.3 µmol/cm2.min). The CO2 emissions were positively correlated with organic loading but inversely correlated with HRT. The CH4 emissions were positively correlated with HRT (26.3 µmol/cm2.min under 24 h HRT of the floating bed AS system). The N2O emissions were positively correlated with nitrogen loading, and the N2O emissions from the floating bed AS system were lower due to an abundance of N2O-reducing bacteria. The floating media enhanced the biological treatment efficiency while maintaining the bacterial community in the system. However, the floating media promoted CH4 production under anoxic conditions. The originality of this research lies in the use of floating media in the biological treatment system to mitigate GHG emissions, unlike existing research which focused primarily on enhancement of the treatment efficiency.


Assuntos
Gases de Efeito Estufa , Poluentes Químicos da Água , Dióxido de Carbono/análise , Efeito Estufa , Metano/análise , Óxido Nitroso/análise , Esgotos , Poluentes Químicos da Água/análise
5.
Chemosphere ; 263: 128332, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297261

RESUMO

This research comparatively investigates the biotoxicity of landfill leachate effluent from acclimatized and non-acclimatized sludge two-stage activated sludge (AS) systems. Both AS systems were operated with two leachate influent concentrations: moderate (condition 1) and elevated (condition 2). The biotoxicity of AS effluent of variable concentrations (10, 20, and 30% (v/v)) was assessed by the mortality rates of common carp (Cyprinus carpio) and glutathione-S-transferase (GST) enzyme activity. The treatment efficiency of the acclimatized sludge AS system for organic and inorganic compounds and nutrients (BOD, COD, TKN, NH4+, PO43-) were 75-96% under condition 1 and 79-93% under condition 2. The non-acclimatized sludge AS system achieved the treatment efficiency of 70-91% under condition 1 and 66-90% under condition 2. The acclimatized sludge AS system also achieved higher biodegradation of trace organic compounds, especially under condition 1. The effluent from acclimatized sludge AS system was less toxic to the common carp, as evidenced by lower mortality rates and higher GST activity. The findings revealed that the acclimatized sludge two-stage AS system could be deployed to effectively treat landfill leachate with moderate concentrations of compounds and trace organic contaminants. The acclimatized sludge AS is an efficient wastewater treatment solution for developing countries with limited technological and financial resources.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Antioxidantes , Reatores Biológicos , Esgotos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Chemosphere ; 230: 606-615, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31128507

RESUMO

This research investigates the effect of hydraulic retention time (HRT) on micropollutant biodegradation of two-stage activated sludge (AS) system augmented with acclimatized sludge treating low-micropollutants wastewater. The experimental wastewater was a mixture of landfill leachate and agriculture wastewater, and HRT was varied between 24, 18, and 12 h. The results showed that, under 24 h HRT, the micropollutant biodegradation efficiencies were 87-93% for bisphenol A (BPA), 2,6-di-tert-butyl-phenol (2,6-DTBP), di-butyl-phthalate (DBP), di-(ethylhexyl)-phthalate (DEHP); 75-81% for carbamazepine (CBZ), diclofenac (DCF); and 88% for N,N-diethylmeta-toluamide (DEET). The degradation efficiencies were similar under 18 h HRT: 87-93% for BPA, 2,6-DTBP, DBP, DEHP; 75-80% for CBZ, DCF; and 80% for DEET. However, the efficiencies substantially declined under 12 h HRT: 71-93%, 55-60%, and 50%, respectively. Importantly, the findings revealed that HRT plays a crucial part in micropollutant biodegradation of bioaugmented AS system. More specifically, too short an HRT (12 h) results in low micropollutant removal efficiency, and too long an HRT (24 h) contributes to low daily throughput and high treatment operation cost. As a result, moderate HRT (18 h) is operationally and economically optimal for bioaugmented AS system treating low-micropollutants wastewater.


Assuntos
Consórcios Microbianos , Esgotos/microbiologia , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Biodegradação Ambiental , Reatores Biológicos , Fatores de Tempo , Águas Residuárias/microbiologia
7.
RSC Adv ; 8(52): 29806-29815, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35547297

RESUMO

Biogas production from cellulosic wastes has received increasing attention. However, its efficiency is limited by the recalcitrant nature of plant cell wall materials. In this study, an active and structurally stable lignocellulolytic microcosm (PLMC) was isolated from seed culture in sugarcane bagasse compost by successive enrichment on Napier grass supplemented with swine manure, which is a mixture of highly fibrous co-digested waste under septic conditions. Tagged 16S rRNA gene sequencing on an Ion PGM platform revealed the adaptive merging of microorganisms in the co-digested substrates resulting in a stable symbiotic consortium comprising anaerobic cellulolytic clostridia stably co-existing with facultative (hemi)cellulolytic bacteria in the background of native microflora in the substrates. Ethanoligenens, Tepidimicrobium, Clostridium, Coprococcus, and Ruminococcus were the most predominant taxonomic groups comprising 72.82% of the total community. The remarkable enrichment of catabolic genes encoding for endo-cellulases and hemicellulases, both of which are key accessory enzymes in PLMC, was predicted by PICRUSt. PLMC was capable of degrading 43.6% g VS and 36.8% g VSS of the co-digested substrates within 7 days at 55 °C. Inoculation of the microcosm to batch thermophilic anaerobic digestion containing both substrates led to a 36.6% increase in methane yield along with an increase in cellulose removal efficiency. This study demonstrated structural and metabolic adaptation of the cellulolytic microcosms isolated in the background of native microflora from the co-digested wastes and its potent application in the enhancement of anaerobic digestion efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...