Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Regul Toxicol Pharmacol ; 147: 105560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182014

RESUMO

High density polyethylene (HDPE) containers are fluorinated to impart barrier properties that prevent permeation of liquid products filled in the container. The process of fluorination may result in the unintentional formation of certain per- and polyfluoroalkyl substances (PFAS), specifically perfluoroalkyl carboxylic acids (PFCAs), as impurities. This study measured the amounts of PFCAs that may be present in the fluorinated HDPE containers, which could migrate into products stored in these containers. Migration studies were also conducted using water and mineral spirits to estimate the amount of PFCAs that might be found in the products stored in these containers. The migration results were used to conservatively model potential PFCA exposures from use of six product types: indoor-sprayed products, floor products, hand-applied products, manually-sprayed pesticides, hose-end sprayed products, and agricultural (industrial) pesticides. The potential that such uses could result in a non-cancer hazard was assessed by comparing the modeled exposures to both applicable human non-cancer toxicity values and environmental screening levels. Environmental releases were also compared to aquatic and terrestrial predicted no-effect concentrations (PNECs). The results of these analyses indicated no unreasonable non-cancer risk to humans, aquatic species, and terrestrial species from PFCAs in products stored in fluorinated HDPE containers.


Assuntos
Fluorocarbonos , Praguicidas , Poluentes Químicos da Água , Humanos , Polietileno/toxicidade , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Ácidos Carboxílicos/toxicidade , Ácidos Carboxílicos/análise , Água , Praguicidas/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
2.
J Occup Environ Hyg ; 21(1): 13-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37788445

RESUMO

Among the first 20 high-priority chemical substances selected by USEPA to undergo risk evaluation as part of the Toxic Substances Control Act, as amended by the Frank R. Lautenberg Chemical Safety for the 21st Century Act of 2016 is 1,3-butadiene (1,3-BD). Because much of the literature related to occupational exposure to 1,3-BD is associated with the use of the substance in synthetic rubber production and few data have been published for exposures to 1,3-BD manufacturing workers, existing industrial hygiene data collected at facilities where the substance is manufactured or processed as a reactant were compiled and analyzed. The dataset was comprised of personal air samples collected between 2010 and 2019 at facilities located throughout the United States and was compiled into a single database using a uniform data collection template. Data designated by the companies as full-shift were stratified by job group and one of three operational conditions of the workplace: routine, turnaround, and non-routine. Data designated by the companies as short-term and task-level were stratified by task description, sample duration, and operational condition. The final aggregated database contained a total of 5,676 full-shift personal samples. Mean concentrations of 1,3-BD for the job groups ranged from 0.012 ppm to 0.16 ppm. High-end estimates of 1,3-BD air concentrations for the job groups under routine operations ranged from 0.014 ppm to 0.23 ppm. The aggregated database also included 1,063 short-term and task-level personal samples. For short-term samples (< =15 min), mean concentrations ranged from 0.49 ppm to 3.9 ppm, with the highest concentrations observed for the cleaning and maintaining equipment tasks. For task samples with durations greater than 15 min, mean concentrations ranged from 0.49 to 3.6 ppm, with the highest concentrations observed for the unloading and loading task. In addition to the personal air sampling records, information on the use of PPE during various tasks was compiled and analyzed. This data set provides robust quantitative air concentration data and exposure control information for which occupational exposures to 1,3-BD in the Manufacturing and Processing as a Reactant condition of use can be assessed.


Assuntos
Indústria Química , Exposição Ocupacional , Humanos , Butadienos , Indústrias , Estados Unidos
3.
Ecotoxicology ; 29(7): 1105, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32417988

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Ecotoxicology ; 29(7): 1106, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32430604

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Ann Work Expo Health ; 63(9): 990-1003, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31580409

RESUMO

Hospital technician surgical smoke exposures during several types of electrocautery-based procedures were evaluated. Personal and area air sampling was performed for 106 individual analytes including ultrafine particulate matter (UFP), volatile organic compounds, polycyclic aromatic hydrocarbons, phenol, aldehydes, carbon monoxide, hydrogen sulfide, and hydrogen cyanide. Acetone, d-limonene, ethanol, ethyl acetate, and fluorene were measured in surgical suites at concentrations 1.1- to 3.7-fold higher than those observed in background. Benzene, α-pinene, methylene chloride, and n-hexane were measured in the absence of a detectable background concentration. All analytes were measured at concentrations that were <1% of the corresponding US federal and state 8-h permissible exposure limits (PELs), if PELs existed. Full-shift average UFP concentrations ranged from 773 to 2257 particles/cm3, approximately one order of magnitude higher than surgical suite background concentrations. A comparison of two breast reduction procedures suggested that the use of smoke evacuators reduced UFP exposure by 6-fold. We concluded that selection and evaluation of key hazards, particularly UFP, under a variety of experimental conditions would be beneficial to elucidate potential health effects and causes osf employee complaints. Recommendations for successful sampling campaigns in future surgical smoke occupational exposure studies are provided. We also recommend the continued use of engineering controls, local exhaust ventilation, and surgical N95 respirators to reduce personal exposures to UFP in surgical smoke.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Eletrocoagulação , Exposição Ocupacional/análise , Fumaça/análise , Humanos , Material Particulado/análise , Projetos Piloto , Hidrocarbonetos Policíclicos Aromáticos/análise , Ventilação , Compostos Orgânicos Voláteis/análise
6.
J Occup Environ Hyg ; 16(6): 410-421, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31084474

RESUMO

The objective of this study was to characterize worker exposure to airborne metal and particulate matter in shops where multiple types of metalworking tasks were performed. The sampling strategy included full-shift and task-based personal samples on workers who performed flux-cored arc welding, personal samples on workers performing non-welding metalworking tasks, and area samples near welders, representing bystanders to welding. Size-fractionated particulate matter adjacent to welding activities was measured using real-time monitoring devices. Samples were analyzed for 21 individual metals, of which 8 were frequently detected. Exceedance fractions were calculated based on the distribution of results for each frequently detected metal. Exceedance fractions were <5% for all metals, except manganese (6% of the REL, 55% of the inhalable TLV-TWA and 91% of the respirable TLV-TWA) and iron oxide (10% of the REL and TLV-TWA) for Shop 1 bystander samples, manganese (68% for the inhalable TLV-TWA and 98% of the respirable TLV-TWA) for welder samples, and manganese (35% for the inhalable TLV-TWA and 80% of the respirable TLV-TWA) and iron oxide (12% for the PEL and 23% for the REL and TLV-TWA) for metalworker samples. Particulate matter concentrations measured at distances of 0.9-1.5 m and 2.1-2.7 m from the welder were within the same order of magnitude. The results of this study allow for comparison to health-based exposure limits for select individual components of welding fume with a low to medium degree of censorship.


Assuntos
Metais/análise , Exposição Ocupacional/análise , Material Particulado/análise , Soldagem , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Compostos Férricos/análise , Humanos , Exposição por Inalação/análise , Manganês/análise , Metalurgia , Pennsylvania
8.
Integr Environ Assess Manag ; 13(1): 198-207, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27006271

RESUMO

Manufacturers lack a reliable means for determining whether a chemical will be targeted for deselection from their supply chain. In this analysis, 3 methods for determining whether a specific chemical (triclosan) would meet the criteria necessary for being targeted for deselection are presented. The methods included a list-based approach, use of a commercially available chemical assessment software tool run in 2 modes, and a public interest evaluation. Our results indicated that triclosan was included on only 6 of the lists reviewed, none of which were particularly influential in chemical selection decisions. The results from the chemical assessment tool evaluations indicated that human and ecological toxicity for triclosan is low and received scores indicating that the chemical would be considered of low concern. However, triclosan's peak public interest tracked several years in advance of increased regulatory scrutiny of this chemical suggesting that public pressure may have been influential in deselection decisions. Key data gaps and toxicity endpoints not yet regulated such as endocrine disruption potential or phototoxicity, but that are important to estimate the trajectory for deselection of a chemical, are discussed. Integr Environ Assess Manag 2017;13:198-207. © 2016 SETAC.


Assuntos
Técnicas de Apoio para a Decisão , Monitoramento Ambiental/métodos , Poluentes Ambientais/toxicidade , Poluição Ambiental/estatística & dados numéricos , Triclosan/toxicidade , Medição de Risco/métodos
9.
Toxicol Ind Health ; 33(3): 193-210, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26862134

RESUMO

Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (<180 min) samples characterizing 24 tasks were evaluated. Personal air sample data from four individual refineries were pooled based on a number of factors including (1) the consistent sampling approach used by refinery industrial hygienists over time, (2) the use of similar exposure controls, (3) the comparability of benzene content of process streams and end products, (4) the ability to assign uniform job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers' exposures to benzene over the past 30 years.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Poluição do Ar/prevenção & controle , Benzeno/toxicidade , Exposição por Inalação/efeitos adversos , Exposição Ocupacional/efeitos adversos , Indústria de Petróleo e Gás , Adulto , Análise de Variância , Bases de Dados Factuais , Emprego/classificação , Emprego/tendências , Monitoramento Ambiental , Humanos , Illinois , Exposição por Inalação/prevenção & controle , Louisiana , Exposição Ocupacional/prevenção & controle , Saúde Ocupacional/tendências , Ocupações/classificação , Ocupações/tendências , Indústria de Petróleo e Gás/tendências , Análise Espaço-Temporal , Texas , Fatores de Tempo , Trabalho/classificação , Trabalho/tendências , Recursos Humanos
10.
Environ Monit Assess ; 188(7): 410, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27312253

RESUMO

A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Fraturamento Hidráulico , Compostos Orgânicos Voláteis/análise , Pennsylvania
11.
Ann Occup Hyg ; 59(9): 1122-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26209596

RESUMO

Current recommendations for nanomaterial-specific exposure assessment require adaptation in order to be applied to complicated manufacturing settings, where a variety of particle types may contribute to the potential exposure. The purpose of this work was to evaluate a method that would allow for exposure assessment of nanostructured materials by chemical composition and size in a mixed dust setting, using carbon black (CB) and amorphous silica (AS) from tire manufacturing as an example. This method combined air sampling with a low pressure cascade impactor with analysis of elemental composition by size to quantitatively assess potential exposures in the workplace. This method was first pilot-tested in one tire manufacturing facility; air samples were collected with a Dekati Low Pressure Impactor (DLPI) during mixing where either CB or AS were used as the primary filler. Air samples were analyzed via scanning transmission electron microscopy (STEM) coupled with energy dispersive spectroscopy (EDS) to identify what fraction of particles were CB, AS, or 'other'. From this pilot study, it was determined that ~95% of all nanoscale particles were identified as CB or AS. Subsequent samples were collected with the Dekati Electrical Low Pressure Impactor (ELPI) at two tire manufacturing facilities and analyzed using the same methodology to quantify exposure to these materials. This analysis confirmed that CB and AS were the predominant nanoscale particle types in the mixing area at both facilities. Air concentrations of CB and AS ranged from ~8900 to 77600 and 400 to 22200 particles cm(-3), respectively. This method offers the potential to provide quantitative estimates of worker exposure to nanoparticles of specific materials in a mixed dust environment. With pending development of occupational exposure limits for nanomaterials, this methodology will allow occupational health and safety practitioners to estimate worker exposures to specific materials, even in scenarios where many particle types are present.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poeira/análise , Monitoramento Ambiental/métodos , Indústria Manufatureira , Nanopartículas/análise , Exposição Ocupacional/análise , Humanos , Exposição por Inalação/análise , Microscopia Eletrônica de Transmissão e Varredura , Saúde Ocupacional , Tamanho da Partícula , Projetos Piloto , Borracha/análise , Dióxido de Silício/análise , Fuligem/análise
12.
Sci Total Environ ; 533: 476-87, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26184905

RESUMO

Automobile tires require functional rubber additives including curing agents and antioxidants, which are potentially environmentally available from tire and road wear particles (TRWP) deposited in soil and sediment. A novel methodology was employed to evaluate the environmental fate of three commonly-used tire chemicals (N-cyclohexylbenzothiazole-2-sulfenamide (CBS), N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6-PPD) and 1,3-diphenylguanidine (DPG)), using a road simulator, an artificial weathering chamber, column leaching tests, and OECD 308 sediment/water incubator studies. Environmental release factors were quantified for curing (f(C)), tire wear (f(W)), terrestrial weathering (f(S)), leaching from TRWP (f(L)), and environmental availability from TRWP (f(A)) by liquid chromatography-tandem mass spectroscopy (LC/MS/MS) analyses. Cumulative fractions representing total environmental availability (F(T)) and release to water (FR) were calculated for the tire chemicals and 13 transformation products. F(T) for CBS, DPG and 6-PPD inclusive of transformation products for an accelerated terrestrial aging time in soil of 0.1 years was 0.08, 0.1, and 0.06, respectively (equivalent to 6 to 10% of formulated mass). In contrast, a wider range of 5.5×10(-4) (6-PPD) to 0.06 (CBS) was observed for F(R) at an accelerated age of 0.1 years, reflecting the importance of hydrophobicity and solubility for determining the release to the water phase. Significant differences (p<0.05) in the weathering factor, f(S), were observed when chemicals were categorized by boiling point or hydrolysis rate constant. A significant difference in the leaching factor, f(L), and environmental availability factor, f(A), was also observed when chemicals were categorized by log K(ow). Our methodology should be useful for lifecycle analysis of other functional polymer chemicals.


Assuntos
Modelos Químicos , Compostos Orgânicos/análise , Polímeros/química , Poluentes da Água/análise , Sedimentos Geológicos/química , Organização para a Cooperação e Desenvolvimento Econômico , Material Particulado/análise , Espectrometria de Massas em Tandem , Água
13.
Integr Environ Assess Manag ; 11(2): 242-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25377590

RESUMO

The last decade has seen an increased focus on evaluating the safety and sustainability of chemicals in consumer and industrial products. In order to effectively and accurately evaluate safety and sustainability, tools are needed to characterize hazard, exposure, and risk pertaining to products and processes. Because many of these tools will be used to identify problematic chemistries, and because many have potential applications in various steps of an alternatives analysis, the limitations and capabilities of available tools should be understood by users so that, ultimately, potential chemical risk is accurately reflected. In our study, we examined 32 chemical characterization tools from government, industry, academia, and non-governmental organizations (NGOs). The tools we studied were diverse, and varied widely in their scope and assessment. As such, they were separated into five categories for comparison: 1) Screening and Prioritization; 2) Database Utilization; 3) Hazard Assessment; 4) Exposure and Risk Assessment; and 5) Certification and Labeling. Each tool was scored based on our weighted set of criteria, and then compared to other tools in the same category. Ten tools received a high score in one or more categories; 24 tools received a medium score in one or more categories, and five tools received a low score in one or more categories. Although some tools were placed into more than one category, no tool encompassed all five of the assessment categories. Though many of the tools evaluated may be useful for providing guidance for hazards - and, in some cases, exposure - few tools characterize risk. To our knowledge, this study is the first to critically evaluate a large set of chemical assessment tools and provide an understanding of their strengths and limitations.


Assuntos
Técnicas de Apoio para a Decisão , Exposição Ambiental , Monitoramento Ambiental/métodos , Substâncias Perigosas/análise , Humanos , Medição de Risco/métodos
16.
Environ Sci Technol ; 47(15): 8138-47, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23841521

RESUMO

Impacts of surface runoff to aquatic species are an ongoing area of concern. Tire and road wear particles (TRWP) are a constituent of runoff, and determining accurate TRWP concentrations in sediment is necessary in order to evaluate the likelihood that these particles present a risk to the aquatic environment. TRWP consist of approximately equal mass fractions of tire tread rubber and road surface mineral encrustations. Sampling was completed in the Seine (France), Chesapeake (U.S.), and Yodo-Lake Biwa (Japan) watersheds to quantify TRWP in the surficial sediment of watersheds characterized by a wide diversity of population densities and land uses. By using a novel quantitative pyrolysis-GC/MS analysis for rubber polymer, we detected TRWP in 97% of the 149 sediment samples collected. The mean concentrations of TRWP were 4500 (n = 49; range = 62-11 600), 910 (n = 50; range = 50-4400) and 770 (n = 50; range = 26-4600) µg/g d.w. for the characterized portions of the Seine, Chesapeake and Yodo-Lake Biwa watersheds, respectively. A subset of samples from the watersheds (n = 45) was pooled to evaluate TRWP metals, grain size and organic carbon correlations by principal components analysis (PCA), which indicated that four components explain 90% of the variance. The PCA components appeared to correspond to (1) metal alloys possibly from brake wear (primarily Cu, Pb, Zn), (2) crustal minerals (primarily Al, V, Fe), (3) metals mediated by microbial immobilization (primarily Co, Mn, Fe with TOC), and (4) TRWP and other particulate deposition (primarily TRWP with grain size and TOC). This study should provide useful information for assessing potential aquatic effects related to tire service life.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Sedimentos Geológicos/química , Material Particulado/análise , França , Japão , Análise de Componente Principal , Incerteza , Estados Unidos
17.
J Air Waste Manag Assoc ; 63(4): 424-32, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23687727

RESUMO

UNLABELLED: Concerns have arisen among the public regarding the potentialfor drinking-water contamination from the migration of methane gas and hazardous chemicals associated with hydraulic fracturing and horizontal drilling. However, little attention has been paid to the potentialfor groundwater contamination resulting from surface spills from storage and production facilities at active well sites. We performed a search for publically available data regarding groundwater contamination from spills at ULS. drilling sites. The Colorado Oil and Gas Conservation Commission (COGCC) database was selected for further analysis because it was the most detailed. The majority ofspills were in Weld County, Colorado, which has the highest density of wells that used hydraulic fracturing for completion, many producing both methane gas and crude oil. We analyzed publically available data reported by operators to the COGCC regarding surface spills that impacted groundwater From July 2010 to July 2011, we noted 77 reported surface spills impacting the groundwater in Weld County, which resulted in surface spills associated with less than 0.5% of the active wells. The reported data included groundwater samples that were analyzed for benzene, toluene, ethylbenzene, andxylene (BTEX) components of crude oil. For groundwater samples taken both within the spill excavation area and on the first reported date of sampling, the BTEX measurements exceeded National Drinking Water maximum contaminant levels (MCLs) in 90, 30, 12, and 8% of the samples, respectively. However, actions taken to remediate the spills were effective at reducing BJTEX levels, with at least 84% of the spills reportedly achieving remediation as of May 2012. Our analysis demonstrates that surface spills are an important route of potential groundwater contamination from hydraulic fracturing activities and should be a focus of programs to protect groundwater IMPLICATIONS: While benzene can occur naturally in groundwater sources, spills and migration of chemicals used for hydraulic fracturing activities have recently been thought to be a main source of benzene contamination in groundwater. However, there is little scientific literature to support that claim. Therefore, we accessed a publically available database and tracked the number of reported surface spills with potential groundwater impact over a 1-year period. Although the number of surface spills was minimal, our analysis provides scientific evidence that benzene can contaminate groundwater sources following surface spills at active well sites.


Assuntos
Derivados de Benzeno/química , Benzeno/química , Água Subterrânea/química , Tolueno/química , Poluentes Químicos da Água/química , Xilenos/química , Monitoramento Ambiental , Indústrias Extrativas e de Processamento , Resíduos Industriais
18.
Ecotoxicology ; 22(1): 13-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23001428

RESUMO

Tire and road wear particles (TRWP) consist of a complex mixture of rubber, and pavement released from tires during use on road surfaces. Subsequent transport of the TRWP into freshwater sediments has raised some concern about the potential adverse effects on aquatic organisms. Previous studies have shown some potential for toxicity for tread particles, however, toxicity studies of TRWP collected from a road simulator system revealed no acute toxicity to green algae, daphnids, or fathead minnows at concentrations up to 10,000 mg/kg under conditions representative of receiving water bodies. In this study, the chronic toxicity of TRWP was evaluated in four aquatic species. Test animals were exposed to whole sediment spiked with TRWP at concentrations up to 10,000 mg/kg sediment or elutriates from spiked sediment. Exposure to TRWP spiked sediment caused mild growth inhibition in Chironomus dilutus but had no adverse effect on growth or reproduction in Hyalella azteca. Exposure to TRWP elutriates resulted in slightly diminished survival in larval Pimephales promelas but had no adverse effect on growth or reproduction in Ceriodaphnia dubia. No other endpoints in these species were affected. These results, together with previous studies demonstrating no acute toxicity of TRWP, indicate that under typical exposure conditions TRWP in sediments pose a low risk of toxicity to aquatic organisms.


Assuntos
Sedimentos Geológicos/química , Material Particulado/toxicidade , Borracha/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Anfípodes/crescimento & desenvolvimento , Animais , Chironomidae/efeitos dos fármacos , Chironomidae/crescimento & desenvolvimento , Cladocera/efeitos dos fármacos , Cladocera/crescimento & desenvolvimento , Cyprinidae/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos , Testes de Toxicidade Aguda
19.
Int J Environ Res Public Health ; 9(11): 4033-55, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23202830

RESUMO

Pyrolysis(pyr)-GC/MS analysis of characteristic thermal decomposition fragments has been previously used for qualitative fingerprinting of organic sources in environmental samples. A quantitative pyr-GC/MS method based on characteristic tire polymer pyrolysis products was developed for tread particle quantification in environmental matrices including soil, sediment, and air. The feasibility of quantitative pyr-GC/MS analysis of tread was confirmed in a method evaluation study using artificial soil spiked with known amounts of cryogenically generated tread. Tread concentration determined by blinded analyses was highly correlated (r2 ≥ 0.88) with the known tread spike concentration. Two critical refinements to the initial pyrolysis protocol were identified including use of an internal standard and quantification by the dimeric markers vinylcyclohexene and dipentene, which have good specificity for rubber polymer with no other appreciable environmental sources. A novel use of deuterated internal standards of similar polymeric structure was developed to correct the variable analyte recovery caused by sample size, matrix effects, and ion source variability. The resultant quantitative pyr-GC/MS protocol is reliable and transferable between laboratories.


Assuntos
Poluentes Ambientais/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Temperatura Alta , Borracha/análise , Calibragem , Deutério/química , Controle de Qualidade , Padrões de Referência , Sensibilidade e Especificidade
20.
Inhal Toxicol ; 24(13): 907-17, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23121300

RESUMO

Tire and road wear particles (TRWP) are a component of ambient particulate matter (PM) produced from the interaction of tires with the roadway. Inhalation of PM has been associated with cardiopulmonary morbidities and mortalities thought to stem from pulmonary inflammation. To determine whether TRWP may contribute to these events, the effects of subacute inhalation of TRWP were evaluated in rats. TRWP were collected at a road simulator laboratory, aerosolized, and used to expose male and female Sprague-Dawley rats (n = 10/treatment group) at ~10, 40, or 100 µg/m³ TRWP via nose-only inhalation for 6 h/day for 28 days. Particle size distribution of the aerosolized TRWP was found to be within the respirable range for rats. Toxicity was assessed following OECD guidelines (TG 412). No TRWP-related effects were observed on survival, clinical observations, body or organ weights, gross pathology, food consumption, immune system endpoints, serum chemistry, or biochemical markers of inflammation or cytotoxicity. Rare to few focal areas of subacute inflammatory cell infiltration associated with TWRP exposure were observed in the lungs of one mid and four high exposure animals, but not the low-exposure animals. These alterations were minimal, widely scattered and considered insufficient in extent or severity to have an impact on pulmonary function. Furthermore, it is expected that these focal lesions would remain limited and may undergo resolution without long-term or progressive pulmonary alterations. Therefore, from this study we identified a no-observable-adverse-effect-level (NOAEL) of 112 µg/m³ of TRWP in rats for future use in risk assessment of TRWP.


Assuntos
Poluentes Ambientais/toxicidade , Pulmão/efeitos dos fármacos , Veículos Automotores , Material Particulado/toxicidade , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Citocinas/metabolismo , Poluentes Ambientais/química , Pulmão/metabolismo , Pulmão/patologia , Nível de Efeito Adverso não Observado , Tamanho da Partícula , Material Particulado/química , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade Subaguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA