Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 8(8): 835-840, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28835798

RESUMO

Adenosine A2A receptor (A2AAdoR) antagonism is a nondopaminergic approach to Parkinson's disease treatment that is under development. Earlier we had reported the therapeutic potential of 7-methoxy-4-morpholino-benzothiazole derivatives as A2AAdoR antagonists. We herein described a novel series of [1,2,4]triazolo[5,1-f]purin-2-one derivatives that displays functional antagonism of the A2A receptor with a high degree of selectivity over A1, A2B, and A3 receptors. Compounds from this new scaffold resulted in the discovery of highly potent, selective, stable, and moderate brain penetrating compound 33. Compound 33 endowed with satisfactory in vitro and in vivo pharmacokinetics properties. Compound 33 demonstrated robust oral efficacies in two commonly used models of Parkinson's disease (haloperidol-induced catalepsy and 6-OHDA lesioned rat models) and depression (TST and FST mice models).

2.
Eur J Med Chem ; 134: 218-229, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28415011

RESUMO

Adenosine induces bronchial hyperresponsiveness and inflammation in asthmatics through activation of A2B adenosine receptor (A2BAdoR). Selective antagonists have been shown to attenuate airway reactivity and improve inflammatory conditions in pre-clinical studies. Hence, the identification of novel, potent and selective A2BAdoR antagonist may be beneficial for the potential treatment of asthma and Chronic Obstructive Pulmonary Disease (COPD). Towards this effort, we explored several prop-2-ynylated C8-aryl or heteroaryl substitutions on xanthine chemotype and found that 1-prop-2-ynyl-1H-pyrazol-4-yl moiety was better tolerated at the C8 position. Compound 59, exhibited binding affinity (Ki) of 62 nM but was non-selective for A2BAdoR over other AdoRs. Incorporation of substituted phenyl on the terminal acetylene increased the binding affinity (Ki) significantly to <10 nM. Various substitutions on terminal phenyl group and different alkyl substitutions on N-1 and N-3 were explored to improve the potency, selectivity for A2BAdoR and the solubility. In general, compounds with meta-substituted phenyl provided better selectivity for A2BAdoR compared to that of para-substituted analogs. Substitutions such as basic amines like pyrrolidine, piperidine, piperazine or cycloalkyls with polar group were tried on terminal acetylene, keeping in mind the poor solubility of xanthine analogs in general. However, these substitutions led to a decrease in affinity compared to compound 59. Subsequent SAR optimization resulted in identification of compound 46 with high human A2BAdoR affinity (Ki = 13 nM), selectivity against other AdoR subtypes and with good pharmacokinetic properties. It was found to be a potent functional A2BAdoR antagonist with a Ki of 8 nM in cAMP assay in hA2B-HEK293 cells and an IC50 of 107 nM in IL6 assay in NIH-3T3 cells. Docking study was performed to rationalize the observed affinity data. Structure-activity relationship (SAR) studies also led to identification of compound 36 as a potent A2BAdoR antagonist with Ki of 1.8 nM in cAMP assay and good aqueous solubility of 529 µM at neutral pH. Compound 46 was further tested for in vivo efficacy and found to be efficacious in ovalbumin-induced allergic asthma model in mice.


Assuntos
Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Asma/tratamento farmacológico , Receptor A2B de Adenosina/metabolismo , Xantina/química , Xantina/uso terapêutico , Antagonistas do Receptor A2 de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacocinética , Animais , Asma/induzido quimicamente , Asma/metabolismo , Cães , Desenho de Fármacos , Células Hep G2 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Ovalbumina , Ratos , Receptor A2B de Adenosina/química , Xantina/metabolismo , Xantina/farmacocinética
3.
Eur J Med Chem ; 127: 986-996, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842891

RESUMO

A2BAdoR is a low affinity adenosine receptor that functions by Gs mediated elevation of cAMP and subsequent downstream signaling. The receptor has been implicated in lung inflammatory disorders like COPD and asthma. Several potent and selective A2BAdoR antagonists have been reported in literature, however most of the compounds suffer from poor pharmacokinetic profile. Therefore, with the aim to identify novel, potent and selective A2BAdoR antagonists with improved pharmacokinetic properties, we first explored more constrained form of MRS-1754 (4). To improve the metabolic stability, several linker modifications were attempted as replacement of amide linker along with different phenyl or other heteroaryls between C8 position of xanthine head group and terminal phenyl ring. SAR optimization resulted in identification of two novel A2BAdoR antagonists, 8-{1-[5-Oxo-1-(4-trifluoromethyl-phenyl)-pyrrolidin-3-ylmethyl]-1H-pyrazol-4-yl}-1,3-dipropyl-xanthine (31) and 8-(1-{2-Oxo-2-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-ethyl}-1H-pyrazol-4-yl)-1,3-dipropyl-xanthine (65), with high binding affinity (Ki = 1 and 1.5 nM, respectively) and selectivity for A2BAdoR with very good functional potency of 0.9 nM and 4 nM, respectively. Compound 31 and 65 also displayed good pharmacokinetic properties in mice with 27% and 65% oral bioavailability respectively. When evaluated in in vivo mice model of asthma, compound 65 also inhibited airway inflammation and airway reactivity in ovalbumin induced allergic asthma at 3 mpk dose.


Assuntos
Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Desenho de Fármacos , Receptor A2B de Adenosina/metabolismo , Xantina/síntese química , Xantina/farmacologia , Antagonistas do Receptor A2 de Adenosina/química , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Técnicas de Química Sintética , Masculino , Camundongos , Relação Estrutura-Atividade , Xantina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...