Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 334: 122159, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442330

RESUMO

The prevalence and adverse impacts of microplastics requires the identification of science-based abatement measures. Electrocoagulation treatment is a cost-effective oxidation process that removes numerous pollutants, including to some extent, microplastics. The performance of a custom-built electrocoagulation reactor was determined by calculating the removal efficiency. The effects of the oxidation process on polymer types (polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET) and polypropylene (PP)) and shapes (fibres and fragments) were investigated in synthetic wastewater and laundry wastewater. The calculated removal efficiency suggested that electrocoagulation treatment was an effective technology for microplastics abatement. More fibres tended to be removed than fragments, viz. 92% fibres removed versus 88% fragments. The findings also demonstrated that specific polymers were preferentially removed, viz. PET > LDPE > PP > PA. Further analysis indicated that the electrocoagulation treatment affected microplastic polymers physically, viz. flaking and changed surface conditions, as well as chemically, viz. changes in vibrational energies of C-O-C stretching bonds, C=O stretching bonds, C-H stretching bonds and formation of reactive oxygen species (ROS). Our findings indicate that whilst seemingly effective, electrocoagulation treatment induces changes to microplastic polymers that could beneficially lead to degradation, and/or further fragmentation or breakdown and thereby potentially generating more bioavailable toxic nanoplastic byproducts.


Assuntos
Microplásticos , Poluentes Químicos da Água , Polímeros , Plásticos , Águas Residuárias , Poluentes Químicos da Água/análise , Polipropilenos , Nylons , Polietileno , Polietilenotereftalatos , Eletrocoagulação , Monitoramento Ambiental
2.
Adv Sci (Weinh) ; 10(7): e2205809, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36698305

RESUMO

Solar-driven photothermal water evaporation is considered an elegant and sustainable technology for freshwater production. The existing systems, however, often suffer from poor stability and biofouling issues, which severely hamper their prospects in practical applications. Conventionally, photothermal materials are deposited on the membrane supports via vacuum-assisted filtration or dip-coating methods. Nevertheless, the weak inherent material-membrane interactions frequently lead to poor durability, and the photothermal material layer can be easily peeled off from the hosting substrates or partially dissolved when immersed in water. In the present article, the discovery of the incorporation of borophene into cellulose nanofibers (CNF), enabling excellent environmental stability with a high light-to-heat conversion efficiency of 91.5% and water evaporation rate of 1.45 kg m-2 h-1 under simulated sunlight is reported. It is also demonstrated that borophene papers can be employed as an excellent active photothermal material for eliminating almost 100% of both gram-positive and gram-negative bacteria within 20 min under three sun irradiations. The result opens a new direction for the design of borophene-based papers with unique photothermal properties which can be used for the effective treatment of a wide range of wastewaters.


Assuntos
Bactérias Gram-Negativas , Água , Antibacterianos , Bactérias Gram-Positivas , Celulose
3.
Microb Ecol ; 86(1): 271-281, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35610382

RESUMO

Biodegradation of polycyclic aromatic hydrocarbons (PAHs) under completely anaerobic sulfate-reducing conditions is an energetically challenging process. To date, anaerobic degradations of only two-ringed naphthalene and three-ringed phenanthrene by sediment-free and enriched sulfate-reducing bacteria have been reported. In this study, sulfate-reducing enrichment cultures capable of degrading naphthalene and four-ringed PAH, pyrene, were enriched from a contaminated former gas plant site soil. Bacterial community composition analysis revealed that a naphthalene-degrading enrichment culture, MMNap, was dominated (84.90%) by a Gram-positive endospore-forming member of the genus Desulfotomaculum with minor contribution (8.60%) from a member of Clostridium. The pyrene-degrading enrichment, MMPyr, was dominated (97.40%) by a species of Desulfotomaculum. The sequences representing the Desulfotomaculum phylotypes shared 98.80% similarity to each other. After 150 days of incubation, MMNap degraded 195 µM naphthalene with simultaneous reduction of sulfate and accumulation of sulfide. Similarly, MMPyr degraded 114 µM pyrene during 180 days of incubation with nearly stochiometric sulfate consumption and sulfide accumulation. In both cases, the addition of sulfate reduction inhibitor, molybdate (20 mM), resulted in complete cessation of the substrate utilization and sulfate reduction that clearly indicated the major role of the sulfate-reducing Desulfotomaculum in biodegradation of the two PAHs. This study is the first report on anaerobic pyrene degradation by a matrix-free, strictly anaerobic, and sulfate-reducing enrichment culture.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Sulfatos , Anaerobiose , Sulfatos/metabolismo , Naftalenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos , Biodegradação Ambiental
4.
J Environ Manage ; 325(Pt A): 116425, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240642

RESUMO

A methylotrophic enrichment culture, MM34X, has been assessed for its exceptional ability in biodegradation of dimethylformamide (DMF) and bioremediation of laboratory wastewater (LWW) co-contaminated with polycyclic aromatic hydrocarbons (PAHs). The culture MM34X tolerated high concentrations of DMF and efficiently degraded 98% of 20,000 mg L-1 DMF within 120 h. LWW bioremediation was performed in stirred bottle laboratory-scale bioreactor. After 35 days of incubation, 2760.8 ± 21.1 mg L-1 DMF, 131.8 ± 9.7 mg L-1 phenanthrene, 177.3 ± 7.5 mg L-1 pyrene and 39.5 ± 2.7 mg L-1 BaP in LWW were removed. Analysis of post-bioremediation residues indicated the absence of any known toxic intermediates. The efficacy of bioremediation was further evaluated through cyto-genotoxicity assays using Allium cepa. The roots of A. cepa exposed to bioremediated LWW showed improved mitotic index, whereas original LWW completely arrested cell growth. Similarly, the alkaline comet assay indicated alleviation of genotoxicity in bioremediated LWW, as evidenced by significantly lower DNA damage in terms of tail DNA and Olive tail moment. In addition, oxidative stress assays, performed using fluorescent probes 2',7'-dichlorodihydrofluorescein diacetate, C11-BODIPY and dihydrorhodamine 123, revealed significant mitigation of oxidative stress potential in bioremediated LWW. Our findings suggest that the enrichment MM34X may prime the development of inexpensive and efficient large-scale bioremediation of LWW co-contaminated with PAHs and DMF.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/química , Águas Residuárias , Dimetilformamida , Poluentes do Solo/química
5.
Biodegradation ; 33(6): 575-591, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35976498

RESUMO

Bioaugmentation effectively enhances microbial bioremediation of hazardous polycyclic aromatic hydrocarbons (PAHs) from contaminated environments. While screening for pyrene-degrading bacteria from a former manufactured gas plant soil (MGPS), the mixed enrichment culture was found to be more efficient in PAHs biodegradation than the culturable pure strains. Interestingly, analysis of 16S rRNA sequences revealed that the culture was dominated by a previously uncultured member of the family Rhizobiaceae. The culture utilized C1 and other methylotrophic substrates, including dimethylformamide (DMF), which was used as a solvent for supplementing the culture medium with PAHs. In the liquid medium, the culture rapidly degraded phenanthrene, pyrene, and the carcinogenic benzo(a)pyrene (BaP), when provided as the sole carbon source or with DMF as a co-substrate. The efficiency of the culture in the bioremediation of PAHs from the MGPS and a laboratory waste soil (LWS) was evaluated in bench-scale slurry systems. After 28 days, 80% of Σ16 PAHs were efficiently removed from the inoculated MGPS. Notably, the bioaugmentation achieved 90% removal of four-ringed and 60% of highly recalcitrant five- and six-ringed PAHs from the MGPS. Likewise, almost all phenanthrene, pyrene, and 65% BaP were removed from the bioaugmented LWS. This study highlights the application of the methylotrophic enrichment culture dominated by an uncultured bacterium for the efficient bioremediation of PAHs.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , RNA Ribossômico 16S/genética , Poluentes do Solo/metabolismo , Microbiologia do Solo , Benzo(a)pireno/metabolismo , Dimetilformamida/metabolismo , Solo , Pirenos/metabolismo , Fenantrenos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Solventes/metabolismo
6.
Chemosphere ; 291(Pt 2): 132896, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34780740

RESUMO

Perfluorooctane sulfonate (PFOS) is a well-known global persistent organic pollutant of grave concern to ecological and human health. Toxicity of PFOS to animals and humans are well studied. Although few studies have reported the behavioral effect of PFOS on nematode Caenorhabditis elegans, it's transgenerational effects were seldom studied. Therefore, we investigated the toxicity of PFOS on several behavioral responses besides bioaccumulation and transgenerational effects in C. elegans. In contrast to the several published studies, we used lower concentrations (0.5-1000 µg/L or 0.001-2.0 µM) that are environmentally relevant and reported to occur close to the contaminated areas. The 48 h median lethal concentration of PFOS was found to be 3.15 µM (1575 µg/L). PFOS (≥0.01 µM) caused severe toxicity to locomotion, and this effect was even transferred to progeny. However, after a few generations, the defect was rectified in the progeny of single-time exposed parent nematodes. Whereas, continuous exposure at 0.001 µM PFOS, no visible defects were observed in the progeny. PFOS (≥0.01 µM) also significantly decreased the brood size in a concentration-dependent manner. Besides, lifespan was affected by the higher concentration of PFOS (≥1.0 µM). These two behavioral endpoints, lifespan and reproduction defects, became less severe in the progeny. Chemotaxis plasticity was also significantly retarded by ≥ 1.0 µM PFOS compared to the control group. Results indicate that PFOS can exert severe neurobehavioral defects that can be transferred from parents to their offspring. The findings of this study have significant implications for the risk assessment of perfluorinated substances in the environment.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/toxicidade , Animais , Caenorhabditis elegans , Fluorocarbonos/toxicidade , Longevidade
7.
Environ Toxicol Chem ; 40(8): 2240-2246, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34033687

RESUMO

Recently, soil contamination with microplastics has emerged as a serious global environmental concern that has necessitated more research on their potential impacts on soil biota. We investigated the acute and chronic toxicity of 2 different polystyrene microplastics, pure versus commercial (0-0.5% w/w in soil; sized 65-125 µm) on earthworm mortality, reproduction, and genotoxicity. Whereas the microplastics showed no acute toxicity in terms of mortality, reproduction was adversely affected in both parents (F0) and first filial generation (F1) of earthworms, with >50% reduction in juvenile production at 0.5% microplastics concentration in soil. Also, significant genotoxicity in terms of DNA damage was observed in the F0 and F1 earthworms. Chemical analysis of microplastic-exposed soils showed the presence of several benzene derivatives that are associated with polystyrene particles. Our study, for the first time to our knowledge, demonstrated the long-term adverse effects on earthworms of polystyrene microplastics even at environmentally relevant concentrations. The results have significant implications for risk assessment of polystyrene microplastics to soil biota. Environ Toxicol Chem 2021;40:2240-2246. © 2021 SETAC.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Microplásticos , Plásticos/toxicidade , Poliestirenos/análise , Poliestirenos/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
8.
Environ Toxicol Chem ; 40(7): 1973-1982, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33792982

RESUMO

Perfluorobutane sulfonate (PFBS), due to its increasing use as an alternative to perfluooctane sulfonate (PFOS), is widely detected in humans and the environment, necessitating the evaluation of its potential ecotoxicological risk. We assessed the toxicity and bioaccumulation potential of PFBS in Caenorhabditis elegans, using lethality, locomotion, reproduction, life span, growth, and chemotactic behavior as the effect parameters. In addition, a total of 6 generations of exposed parent animals were monitored for locomotion, brood, and life span behaviors. Life span and brood size were significantly reduced in parent nematodes (P0) following exposure to ≥0.1 mM PFBS, but these negative effects did not transfer to the progeny. Although there was no remarkable effect on reproduction and life span in parent worms exposed to ≤0.01 mM PFBS, multigenerational exposure at 0.0005 mM significantly affected the F4 and F5 progeny. Furthermore, 0.01 to 2.0 mM of PFBS substantially retarded the locomotion behavior of P0 worms. At higher concentrations such as 1.0 mM, this negative effect on locomotion was transferred to the next generation (F1) but later recovered from F2 progeny onward. Our findings demonstrate for the first time that chronic exposure to PFBS at higher concentrations can cause behavioral toxicity and could be transferred to the progeny. These findings have significant implications for the environmental risk assessment of PFBS. Environ Toxicol Chem 2021;40:1973-1982. © 2021 SETAC.


Assuntos
Caenorhabditis elegans , Fluorocarbonos , Animais , Fluorocarbonos/toxicidade , Reprodução , Ácidos Sulfônicos
9.
Sci Total Environ ; 691: 605-610, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325860

RESUMO

The potential for bioaccumulation and associated genotoxicity of nonextractable residues (NERs) of polycyclic aromatic hydrocarbon (PAHs) in long-term contaminated soils have not been investigated. Here we report research in which earthworms, Eisenia fetida, were exposed to a soil containing readily available benzo[a]pyrene (B[a]P) and highly sequestered B[a]P NERs aged in soil for 350 days. B[a]P bioaccumulation was assessed and DNA damage (as DNA single strand breaks) in earthworm coelomocytes were evaluated by comet assay. The concentrations of B[a]P in earthworm tissues were generally low, particularly when the soil contained highly sequestered B[a]P NERs, with biota-soil accumulation factors ranging from 0.6 to 0.8 kgOC/kglipid. The measurements related to genotoxicity, that is percentage (%) of DNA in the tails and olive tail moments, were significantly greater (p < 0.05) in the spiked soil containing readily available B[a]P than in soil that did not have added B[a]P. For example, for the soil initially spiked at 10 mg/kg, the percentage of DNA in the tails (29.2%) of coelomocytes after exposure of earthworms to B[a]P-contaminated soils and olive tail moments (17.6) were significantly greater (p < 0.05) than those of unspiked soils (19.6% and 7.0, for percentage of DNA in tail and olive tail moment, respectively). There were no significant (p > 0.05) differences in effects over the range of B[a]P concentrations (10 and 50 mg/kg soil) investigated. In contrast, DNA damage after exposure of earthworms to B[a]P NERs in soil did not differ from background DNA damage in the unspiked soil. These findings are useful in risk assessments as they can be applied to minimise uncertainties associated with the ecological health risks from exposure to highly sequestered PAH residues in long-term contaminated soils.


Assuntos
Benzo(a)pireno/toxicidade , Oligoquetos/fisiologia , Poluentes do Solo/toxicidade , Animais , Benzo(a)pireno/metabolismo , Ensaio Cometa , Dano ao DNA , Poluentes do Solo/metabolismo
10.
Bioresour Technol ; 278: 9-16, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30669030

RESUMO

Metals in traces are vital for microalgae but their occurrence at high concentrations in habitats is a serious ecological concern. We investigated the potential of two acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, isolated from neutral environments, for simultaneous removal of heavy metals such as copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn), and production of biodiesel when grown at pH 3.5. Excepting Cu, the selected metals at concentrations of 10-20 mg L-1 supported good growth of both the strains. Cellular analysis for metal removal revealed the predominance of intracellular mechanism in both the strains resulting in 40-80 and 40-60% removal of Fe and Mn, respectively. In-situ transesterification of biomass indicated enhanced biodiesel yield with increasing concentrations of metals suggesting that both these acid-tolerant microalgae may be the suitable candidates for simultaneous remediation, and sustainable biomass and biodiesel production in environments like metal-rich acid mine drainages.


Assuntos
Biocombustíveis , Clorófitas/metabolismo , Metais Pesados/isolamento & purificação , Microalgas/metabolismo , Ácidos , Biomassa , Esterificação , Concentração de Íons de Hidrogênio
11.
Artigo em Inglês | MEDLINE | ID: mdl-30533873

RESUMO

In this study, we report the first draft genome sequence of Microbacterium esteraromaticum MM1, isolated from golf course soil in South Australia. The genome possesses genes for the hydrolysis of organophosphorus (OP) pesticides and polycyclic aromatic hydrocarbon (PAH) degradation.

12.
Ecotoxicology ; 25(10): 1873-1879, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27650370

RESUMO

The insensitive munition ingredient, 2, 4-dinitroanisole has emerged as an alternative ingredient to 2, 4, 6-trinitro toluene in melt pourable high explosive formulations mainly due to its improved insensitiveness properties. As a result, production of 2, 4-dinitroanisole has increased and as a consequence 2, 4-dinitroanisole has emerged as a potential ingredient to enter the environment and possibly persist in water and soil ecosystems. The present study showed that 2, 4-dinitroanisole, its metabolites (2-amino 4-nitroanisole and 2,4-dinitroanisole) and 2, 4, 6-trinitro toluene were found to induce DNA damages in a freshwater crustacean Daphnia carinata exposed for 48 h and which was investigated by the alkaline single-cell gel electrophoresis (comet assay) method. The value of LC50-48 h of 2, 4-dinitroanisole was determined as 14.87 ± 1.70 (mg L-1) and its metabolites exhibited the similar toxic range although the toxicity of 2, 4, 6-trinitro toluene was seven-fold more toxic (2.32 ± 0.29 mg L-1) than 2, 4-dinitroanisole and its metabolites. Exposure to sub-acute toxicity concentration ranges of 2, 4-dinitroanisole and its metabolites and 2, 4, 6-trinitro toluene showed significant (P < 0.01) DNA damage. The higher concentration of each test chemical exhibited higher tail DNA per cent and increased olive tail moment. The results from this study can be used to identify genotoxic biomarkers for the risk assessment of insensitive munitions exposure in aquatic invertebrates.


Assuntos
Anisóis/toxicidade , Poluentes Ambientais/toxicidade , Substâncias Explosivas/toxicidade , Trinitrotolueno/toxicidade , Animais , Ensaio Cometa , Daphnia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...