Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(28): 7753-7761, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37476723

RESUMO

Interaction between light and molecular vibrations leads to hybrid light-matter states called vibrational polaritons. Even though many intriguing phenomena have been predicted for single-molecule vibrational strong coupling (VSC), several studies suggest that these effects tend to be diminished in the many-molecule regime due to the presence of dark states. Achieving single or few-molecule vibrational polaritons has been constrained by the need for fabricating extremely small mode volume infrared cavities. In this theoretical work, we propose an alternative strategy to achieve single-molecule VSC in a cavity-enhanced Raman spectroscopy (CERS) setup, based on the physics of cavity optomechanics. We then present a scheme harnessing few-molecule VSC to thermodynamically couple two reactions, such that a spontaneous electron transfer can now fuel a thermodynamically uphill reaction that was non-spontaneous outside the cavity.

2.
Nat Commun ; 13(1): 1645, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347131

RESUMO

When molecular transitions strongly couple to photon modes, they form hybrid light-matter modes called polaritons. Collective vibrational strong coupling is a promising avenue for control of chemistry, but this can be deterred by the large number of quasi-degenerate dark modes. The macroscopic occupation of a single polariton mode by excitations, as observed in Bose-Einstein condensation, offers promise for overcoming this issue. Here we theoretically investigate the effect of vibrational polariton condensation on the kinetics of electron transfer processes. Compared with excitation with infrared laser sources, the vibrational polariton condensate changes the reaction yield significantly at room temperature due to additional channels with reduced activation barriers resulting from the large accumulation of energy in the lower polariton, and the many modes available for energy redistribution during the reaction. Our results offer tantalizing opportunities to use condensates for driving chemical reactions, kinetically bypassing usual constraints of fast intramolecular vibrational redistribution in condensed phase.

3.
Phys Rev E ; 104(5-1): 054610, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942740

RESUMO

We report phase separation and liquid-crystal ordering induced by scalar activity in a system of soft repulsive spherocylinders (SRSs) of shape anisotropy L/D=5 using molecular dynamics (MD) simulations. Activity is introduced by increasing the temperature of half of the SRSs (labeled hot) while maintaining the temperature of the other half constant at a lower value (labeled cold). The difference between the two temperatures scaled by the lower temperature provides a measure of the activity. Starting from different equilibrium initial phases, we find that activity leads to segregation of the hot and cold particles. Activity also drives the cold particles through a phase transition to a more ordered state and the hot particles to a state of less order compared to the initial equilibrium state. The cold components of a homogeneous isotropic structure acquire nematic and, at higher activity, crystalline order. Similarly, the cold zone of a nematic initial state undergoes smectic and crystal ordering above a critical value of activity while the hot component turns isotropic. We find that the hot particles occupy a larger volume and exert an extra kinetic pressure, confining, compressing, and provoking an ordering transition of the cold-particle domains.

4.
J Phys Chem B ; 123(1): 180-193, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30525633

RESUMO

We present a method based on the two-phase thermodynamic model (2PT) to calculate the entropy and free energy of various molecular systems in two dimensions (2D) using molecular dynamics (MD) simulations. The 2PT method has been used widely to calculate absolute entropy in a variety of molecular systems in three dimensions. When applying the idea to 2D systems, we found that the fluidicity that determines the decomposition of the vibrational density of states (DoS) into a solidlike and a gaslike component needs to be revised. The solid part is treated using quantum statistics, and the gas part is treated as a hard-disk fluid. We validate this method by computing thermodynamic properties of a two-dimensional Lennard-Jones fluid over a range of densities and temperatures and find excellent agreement with these quantities computed from the equation of state. More importantly, this method allows for the calculation of the entropy and free energy of 2D systems efficiently from a single MD trajectory of less than 50 ps; therefore, it can be a new, powerful way of assessing the thermodynamic properties in 2D problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...