Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 37560, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27857225

RESUMO

Although manganese oxide- and graphene-based supercapacitors have been widely studied, their charge storage mechanisms are not yet fully investigated. In this work, we have studied the charge storage mechanisms of K-birnassite MnO2 nanosheets and N-doped reduced graphene oxide aerogel (N-rGOae) using an in situ X-ray absorption spectroscopy (XAS) and an electrochemical quart crystal microbalance (EQCM). The oxidation number of Mn at the MnO2 electrode is +3.01 at 0 V vs. SCE for the charging process and gets oxidized to +3.12 at +0.8 V vs. SCE and then reduced back to +3.01 at 0 V vs. SCE for the discharging process. The mass change of solvated ions, inserted to the layers of MnO2 during the charging process is 7.4 µg cm-2. Whilst, the mass change of the solvated ions at the N-rGOae electrode is 8.4 µg cm-2. An asymmetric supercapacitor of MnO2//N-rGOae (CR2016) provides a maximum specific capacitance of ca. 467 F g-1 at 1 A g-1, a maximum specific power of 39 kW kg-1 and a specific energy of 40 Wh kg-1 with a wide working potential of 1.6 V and 93.2% capacity retention after 7,500 cycles. The MnO2//N-rGOae supercapacitor may be practically used in high power and energy applications.

2.
Chemphyschem ; 13(2): 583-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22241847

RESUMO

The catalytic activity of carbon nanotubes (CNTs) for the removal of greenhouse gases, like nitrous oxide (N(2)O), can be fine-tuned by metal doping. We modify the inert surfaces of CNTs with Sc, Ti and V transition metals in order to investigate their capability of converting N(2)O to N(2). The stable composite catalysts of Sc-, Ti- and V-doped (5,5)single-walled carbon nanotubes (SWCNTs), along with the unmodified one were investigated by periodic DFT calculations. Without metal doping, the N(2) O decomposition on the bare tube proceeds over a high energy barrier (54.3 kcal mol(-1)) which in the presence of active metals is reduced to 3.6, 8.0 and 10.2 kcal mol(-1) for V-, Ti- and Sc-doped (5,5)SWCNTs, respectively. The superior reactivity is a result of the facilitated electron transfer between the tube and N(2)O caused by the overlap between the d orbitals of the metal and the p orbitals of N(2)O.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...