Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20148, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978311

RESUMO

This research studied how different types and concentrations of encapsulating agents impacted freeze-dried coconut water products. Volatile aroma and physicochemical product characteristics were evaluated. The encapsulating agents were maltodextrin 4-8% (w/v), polydextrose 4-8% (w/v) and xanthan gum 0.1-0.3% (w/v). A plate freezer and an air blast freezer were used to pre-freeze the coconut water before drying. Freezing time had no impact on moisture content and water activity. The flavor compounds of coconut water is composed of alkanes, aldehyde, ketones, organic acids and some other flavor substances. Encapsulating agents are the main factors affecting the flavor of coconut water. Optimal conditions for producing dried coconut water were adding polydextrose at a concentration of 8%. Volatile compounds were assessed under different conditions of SPME- GC-TOFMS. The composition of flavor compounds in coconut water is complex and mainly includes esters, aldehydes, and phenols. Results showed that encapsulating agents improved the volatile aroma of dried coconut water products.


Assuntos
Cocos , Compostos Orgânicos Voláteis , Odorantes , Congelamento , Aldeídos , Dessecação , Compostos Orgânicos Voláteis/química
2.
Fish Shellfish Immunol ; 143: 109191, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890736

RESUMO

Oxygen nanobubble (NB-O2) technology has been introduced to the aquaculture industry in recent years. This treatment usually results in a tremendously high level of dissolved oxygen (DO) in the water. However, little is known about the possible negative effects of hyperoxia due to NB-O2 treatment (hyper-NB-O2) on farmed fish. Here, we investigated i) the effect of short-term hyper-NB-O2 exposure (single treatment) on the innate immunity in Nile tilapia, Oreochromis niloticus, and ii) the effect of long-term hyper-NB-O2 exposure (26-day treatments) on survival, growth performance, gill histology, and gut microbiome in Nile tilapia. A single treatment with NB-O2 for 10 min in 50 L of water resulted in 24.2 ± 0.04 mg/L DO (approximately 2-3 × 107 nanoscale oxygen bubbles/mL). This treatment did not result in differences in expression of several immune-related genes (e.g., TNF-α, LYZ and HPS70) in various tissues (e.g., gill, head kidney, and spleen) compared to the non-treated control. Over a 26-day period of exposure, no significant differences were observed in survival and growth performance of the fish, but minor histological changes were occasionally noted on the gills. Analysis of the gut microbiome revealed a significant increase in the genera Bosea, Exiguobacterium, Hyphomicrobium, and Singulisphaera in the group receiving NB-O2. Moreover, no signs of "gas bubble disease" were observed in the fish throughout the duration of the experiment. Overall, these results suggest that both short- and long-term hyper-NB-O2 exposure appears to be benign and has no obvious adverse effects on fish.


Assuntos
Ciclídeos , Doenças dos Peixes , Microbioma Gastrointestinal , Hiperóxia , Animais , Brânquias , Imunidade Inata , Oxigênio , Água
3.
J Fish Dis ; 46(12): 1391-1401, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37723600

RESUMO

Streptococcus iniae is a bacterial pathogen that causes streptococcosis, leading to significant losses in fish aquaculture globally. This study reported a newly developed probe-based quantitative polymerase chain reaction (qPCR) method for the detection of S. iniae. The primers and probes were designed to target the lactate oxidase gene. The optimized method demonstrated a detection limit of 20 copies per reaction and was specific to S. iniae, as evidenced by no cross-reactivity when assayed against genetic materials extracted from 23 known aquatic animal pathogens, and fish samples infected with Streptococcus agalactiae or Streptococcus dysgalactiae. To validate the newly developed qPCR protocol with field samples, fish specimens were systematically investigated following the Food and Agriculture Organization of the United Nations & Network of Aquaculture Centres in Asia-Pacific three diagnostic levels approach, which integrated basic and advanced techniques for disease diagnosis, including observation of gross signs (level I), bacterial isolation (level II), qPCR and 16S rDNA sequencing (level III). The result showed that 7/7 affected farms (three Asian seabass farms and four tilapia farms) experiencing clinical signs of streptococcosis were diagnosed positive for S. iniae. qPCR assays using DNA extracted directly from fish tissue detected S. iniae in 11 out of 36 fish samples (30.6%), while 24 out of 36 samples (66.7%) tested positive after an enrichment step, including apparently healthy fish from affected farms. Bacterial isolation of S. iniae was only successful in a proportion of clinically diseased fish but not in healthy-looking fish from the same farm. Overall, the newly developed qPCR protocol combined with enrichment would be a useful tool for the diagnosis and surveillance of S. iniae infections in fish populations, thereby aiding in the disease control and prevention.


Assuntos
Doenças dos Peixes , Infecções Estreptocócicas , Tilápia , Animais , Streptococcus iniae , Doenças dos Peixes/microbiologia , Streptococcus agalactiae/genética , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Tilápia/microbiologia
4.
Anal Chem ; 95(37): 13904-13912, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37638540

RESUMO

Foodborne illnesses caused by the ingestion of contaminated foods or beverages are a serious concern due to the millions of reported cases per year. It is essential to develop sensitive and rapid detection methods of foodborne pathogens to ensure food safety for producers and consumers. Unfortunately, current detection techniques still suffer from time-consuming operations and the need for highly skilled personnel. Here, we introduce a highly sensitive dual colorimetric/electrochemical detection approach for Salmonella enterica serovar typhimurium (S. typhimurium) based on a laser-induced graphene-integrated lateral flow immunoassay (LIG-LFIA) strip. The LIG electrode was fabricated by laser engraving on a polyimide tape containing a pseudo silver/silver chloride reference electrode from silver sintering and chlorination. Using double-sided tape inserted into the strip, automatic sequential reagent delivery was enabled for the dual-mode signal readout by single-sample loading. A gold-deposited gold nanoparticle strategy was first employed to simultaneously obtain a colorimetric signal for early screening and a signal turn-on electrochemical response for high-sensitivity and -quantitative analysis. A superior performance of the strip was established, characterized by a short analysis time (12 min assay +15 min sample preparation), a broad working concentration range (1 cfu/10 mL to 108 cfu/mL), and the lowest limit of detection (1 ± 0.5 cfu/10 mL; mean ± standard deviation, n = 3) among reported multimode S. typhimurium detection schemes. The strip was successfully applied in the analysis of various food products without any bacterial enrichment or amplification required, and the results were comparable to those of the standard culture method.


Assuntos
Grafite , Nanopartículas Metálicas , Colorimetria , Ouro , Salmonella typhimurium , Prata , Imunoensaio , Lasers
5.
Fish Shellfish Immunol ; 123: 229-237, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35288305

RESUMO

Nanobubble technology has shown appealing technical benefits and potential applications in aquaculture. We recently found that treatment with ozone nanobubbles (NB-O3) activated expression of several immune-related genes leading to effective response to subsequent exposure to fish pathogens. In this study, we investigated whether pre-treatment of Nile tilapia (Oreochromis niloticus) with NB-O3 can enhance specific immune responses and improve efficacy of immersion vaccination against Streptococcus agalactiae. Spleen and head kidney of fish in the vaccinated groups showed a substantial upregulation in expression levels of pro-inflammatory cytokine genes (IL-1ß, TNF-α, IL-6) and immunoglobulin classes (IgM, IgD, IgT) compared with the unvaccinated control groups. The mRNA transcript of pro-inflammatory cytokine genes was greatest (approx. 2.8-3.3 folds) on day 7 post-vaccination, whereas the relative expression of immunoglobulin genes was greatest (approx. 3.2-4.1 folds) on day 21 post-immunization. Both systemic and mucosal IgM antibodies were elicited in vaccinated groups. As the result, the cumulative survival rate of the vaccinated groups was found to be higher than that of the unvaccinated groups, with a relative percent survival (RPS) ranging from 52.9 to 70.5%. However, fish in the vaccinated groups that received pre-treatment with NB-O3, bacterial antigen uptakes, expression levels of IL-1ß, TNF-α, IL-6,IgM, IgD, and IgT, as well as the specific-IgM antibody levels and percent survival, were all slightly or significantly higher than that of the vaccinated group without pre-treatment with NB-O3. Taken together, our findings suggest that utilizing pre-treatment with NB-O3 may improve the immune response and efficacy of immersion vaccination in Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Ozônio , Infecções Estreptocócicas , Animais , Temperatura Alta , Imersão , Imunoglobulina D , Imunoglobulina M , Interleucina-6 , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae , Fator de Necrose Tumoral alfa , Vacinas de Produtos Inativados
6.
Fish Shellfish Immunol ; 112: 64-73, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33667674

RESUMO

Ozone nanobubble (NB-O3) is a promising technology for improving dissolved oxygen and reducing bacterial concentration in aquaculture systems. Here, we investigated the effects of NB-O3 on the innate immunity of fish by monitoring the expression levels of nonspecific immune-related genes (IL-1ß, IL-2ß, TNF-α), heat-shock protein genes (HSP70, HSP90-α), and a bacteriolytic enzyme, C-type lysozyme, gene (LYZ) post-treatment with this technology. Following exposure to NB-O3, the different tissues of Nile tilapia (Oreochromis niloticus) were collected over time for quantitative real-time PCR (qPCR) analysis. The expression of all the genes evaluated in the gills, the head kidney, and the spleen of the NB-O3 treated group was significantly up-regulated compared to that in the untreated control group. The expression levels were the highest (approx. 2 to 4-fold) at 15 min and 3 h post-exposure and then decreased from 6 to 24 h. These findings suggested that NB-O3 could switch on the innate immunity genes of Nile tilapia. Thus, we hypothesized that the NB-O3-immune-activated fish would respond more effectively to subsequent bacterial infections, thereby improving survivability compared to that of untreated fish. To test this hypothesis, 3 h post NB-O3 exposed fish and unexposed fish were challenged with a lethal dose of Streptococcus agalactiae. Interestingly, the survival rate of the NB-O3 group was significantly higher than that of the non-treated controls, with a relative percent survival (RPS) of 60-70%. Together, these findings indicate, for the first time, that NB-O3 may trigger the nonspecific defense system of the fish, thereby improving fish survivability during subsequent bacterial infections. This research identified another potential benefit of NB-O3 in aquaculture for preventing infectious bacterial diseases.


Assuntos
Adjuvantes Imunológicos/farmacologia , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Ozônio/farmacologia , Animais , Ciclídeos/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Imunidade Inata/efeitos dos fármacos , Nanoestruturas/análise , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia
7.
Analyst ; 145(13): 4637-4645, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32458837

RESUMO

We report for the first time a highly sensitive and rapid quantitative method for the detection of Salmonella Typhimurium (S. Typhimurium) using a conductive immunosensor on a paper-based device (PAD). S. Typhimurium monoclonal antibodies (MA) were first immobilized on a paper-based device and then captured by S. Typhimurium. After an immunoreaction on the device, the polyclonal antibody-colloidal gold conjugate (PA-AuNPs) was dropped to bind with S. Typhimurium. After a complete sandwich reaction, a dark red color appeared on the paper-based device, which can be observed by the naked eye for a rapid screening test. The electrical conductivity of PA-AuNPs between the screen-printed electrodes on the paper-based device was also measured for an accurate quantitative analysis. The electrical conductivity correlated well with the concentration of S. Typhimurium, which was controlled by the amount of S. Typhimurium attached to the polyclonal antibody-colloidal gold conjugate. The device showed a linear correlation for the concentration of the S. Typhimurium in the range of 10-108 CFU mL-1 in a logarithmic plot, with an R2 value of 0.9882 and a limit of detection (LOD) as low as 10 CFU mL-1. This simple, highly sensitive, and rapid method for the S. Typhimurium detection was successfully performed within 30 min, and it can be developed into small portable measuring devices in order to facilitate preliminary screening tests.


Assuntos
Técnicas Bacteriológicas/métodos , Imunoensaio/métodos , Papel , Salmonella typhimurium/isolamento & purificação , Anticorpos Imobilizados/imunologia , Anticorpos Monoclonais/imunologia , Técnicas Bacteriológicas/instrumentação , Ouro/química , Coloide de Ouro/química , Imunoensaio/instrumentação , Limite de Detecção , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Salmonella typhimurium/imunologia
8.
Int J Microbiol ; 2020: 5638961, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32148509

RESUMO

Long pepper (Piper retrofractum Vahl) is a Thai medicinal herb which has been used as one of the common ingredients in variety of Thai foods. Here, we investigated antimicrobial activities of crude bioactive metabolites extracted from fruits of P. retrofractum against 10 pathogenic organisms (bacteria and yeast) causing opportunistic infections in human or animals including Bacillus subtilis ATCC6633, Staphylococcus aureus ATCC25923, Enterococcus faecalis ATCC2921, Escherichia coli ATCC25922, Klebsiella pneumonia TISTR1843, Pseudomonas aeruginosa ATCC741, Salmonella typhi (clinical isolate), Vibrio parahaemolyticus (XN98 and 5HP), and Candida albicans ATCC90020. The results of disk diffusion test showed that the extract from methanol solvent exhibited greater antibacterial activity than other solvents with inhibition zones ranging from 0.5 to 8.0 mm, respectively. Subsequently, minimal inhibition concentration (MIC) determined by the colorimetric assay confirmed that methanol extracts showed consistent results with disk diffusion method. In summary, in vitro assays suggest that methanol is the best solvent for extraction of bioactive metabolites from P. retrofractum fruits. This crude extract can inhibit the majority of human and animal pathogens. This opens up a potential use of pepper fruits in prevention of food-contaminating microorganisms.

9.
J Virol Methods ; 177(1): 71-4, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21762729

RESUMO

Laem-Singh virus (LSNV) was discovered recently in Thailand in farmed Giant Tiger shrimp (Penaeus monodon) displaying signs of slow growth syndrome. Loop-mediated isothermal amplification (LAMP) allows DNA to be amplified rapidly at a constant temperature. Here a reverse transcription (RT)-LAMP method was combined with a chromatographic lateral-flow dipstick (LFD) to detect LSNV RNA rapidly and specifically. The reaction was optimized at 65°C for 30 min and amplified DNA hybridized to an FITC-labeled oligonucleotide probe for 5 min was detected at LFD test line 5 min after application. Including 10 min for rapid RNA extraction, test results could be generated within 1h and did not require electrophoresis. Compared to an existing RT-PCR method, the RT-LAMP-LFD was also ∼1000-fold more sensitive in detecting LSNV RNA.


Assuntos
Hibridização de Ácido Nucleico , Penaeidae/virologia , Vírus de RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Genes Virais/genética , Vírus de RNA/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura
10.
BMC Vet Res ; 7(1): 18, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21569542

RESUMO

BACKGROUND: From 2001-2003 monodon slow growth syndrome (MSGS) caused severe economic losses for Thai shrimp farmers who cultivated the native, giant tiger shrimp, and this led them to adopt exotic stocks of the domesticated whiteleg shrimp as the species of cultivation choice, despite the higher value of giant tiger shrimp. In 2008, newly discovered Laem-Singh virus (LSNV) was proposed as a necessary but insufficient cause of MSGS, and this stimulated the search for the additional component cause(s) of MSGS in the hope that discovery would lead to preventative measures that could revive cultivation of the higher value native shrimp species. RESULTS: Using a universal shotgun cloning protocol, a novel RNA, integrase-containing element (ICE) was found in giant tiger shrimp from MSGS ponds (GenBank accession number FJ498866). In situ hybridization probes and RT-PCR tests revealed that ICE and Laem-Singh virus (LSNV) occurred together in lymphoid organs (LO) of shrimp from MSGS ponds but not in shrimp from normal ponds. Tissue homogenates of shrimp from MSGS ponds yielded a fraction that gave positive RT-PCR reactions for both ICE and LSNV and showed viral-like particles by transmission electron microscopy (TEM). Bioassays of this fraction with juvenile giant tiger shrimp resulted in retarded growth with gross signs of MSGS, and in situ hybridization assays revealed ICE and LSNV together in LO, eyes and gills. Viral-like particles similar to those seen in tissue extracts from natural infections were also seen by TEM. CONCLUSIONS: ICE and LSNV were found together only in shrimp from MSGS ponds and only in shrimp showing gross signs of MSGS after injection with a preparation containing ICE and LSNV. ICE was never found in the absence of LSNV although LSNV was sometimes found in normal shrimp in the absence of ICE. The results suggest that ICE and LSNV may act together as component causes of MSGS, but this cannot be proven conclusively without single and combined bioassays using purified preparations of both ICE and LSNV. Despite this ambiguity, it is recommended in the interim that ICE be added to the agents such as LSNV already listed for exclusion from domesticated stocks of the black tiger shrimp.


Assuntos
Integrases/genética , Penaeidae/virologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Hibridização In Situ , Tecido Linfoide/enzimologia , Tecido Linfoide/virologia , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Penaeidae/enzimologia , Penaeidae/genética , Penaeidae/crescimento & desenvolvimento , RNA Viral/química , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...