Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 904101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910023

RESUMO

The halotolerant cyanobacterium Aphanothece halophytica is a potential H2 producer that induces H2 evolution under nitrogen deprivation. H2 is mainly produced via the catabolism of stored glycogen under dark anaerobic condition. H2 evolution is catalyzed by O2-sensitive bidirectional hydrogenase. The aim of this study was to improve H2 production by A. halophytica using various kinds of inhibitors. Among all types of inhibitors, simazine efficiently promoted the highest H2 production under dark conditions. High simazine concentration and long-term incubation resulted in a decrease in cell and chlorophyll concentrations. The optimal simazine concentration for H2 production by A. halophytica was 25 µM. Simazine inhibited photosynthetic O2 evolution but promoted dark respiration, resulting in a decrease in O2 level. Hence, the bidirectional hydrogenase activity and H2 production was increased. A. halophytica showed the highest H2 production rate at 58.88 ± 0.22 µmol H2 g-1 dry weight h-1 and H2 accumulation at 356.21 ± 6.04 µmol H2 g-1 dry weight after treatment with 25 µM simazine under dark anaerobic condition for 2 and 24 h, respectively. This study demonstrates the potential of simazine for the enhancement of dark fermentative H2 production by A. halophytica.

2.
ScientificWorldJournal ; 2019: 1030236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346323

RESUMO

The unicellular halotolerant cyanobacterium Aphanothece halophytica is a potential dark fermentative producer of molecular hydrogen (H2) that produces very little H2 under illumination. One factor limiting the H2 photoproduction of this cyanobacterium is an inhibition of bidirectional hydrogenase activity by oxygen (O2) obtained from splitting water molecules via photosystem II activity. The present study aimed to investigate the effects of the photosystem II inhibitors carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on H2 production of A. halophytica under light and dark conditions and on photosynthetic and respiratory activities. The results showed that A. halophytica treated with CCCP and DCMU produced H2 at three to five times the rate of untreated cells, when exposed to light. The highest H2 photoproduction rates, 2.26 ±â€Š0.24 and 3.63 ±â€Š0.26 µmol H2 g-1 dry weight h-1, were found in cells treated with 0.5 µM CCCP and 50 µM DCMU, respectively. Without inhibitor treatment, A. halophytica incubated in the dark showed a significant increase in H2 production compared with cells that were incubated in the light. Only CCCP treatment increased H2 production of A. halophytica during dark incubation, because CCCP functions as an uncoupling agent of oxidative phosphorylation. The highest dark fermentative H2 production rate of 39.50 ±â€Š2.13 µmol H2 g-1 dry weight h-1 was found in cells treated with 0.5 µM CCCP after 2 h of dark incubation. Under illumination, CCCP and DCMU inhibited chlorophyll fluorescence, resulting in a low level of O2, which promoted bidirectional hydrogenase activity in A. halophytica cells. In addition, only CCCP enhanced the respiration rate, further reducing the O2 level. In contrast, DCMU reduced the respiration rate in A. halophytica.


Assuntos
Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Cianobactérias/efeitos dos fármacos , Cianobactérias/metabolismo , Diurona/farmacologia , Hidrogênio/metabolismo , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Respiração Celular/efeitos dos fármacos , Respiração Celular/efeitos da radiação , Clorofila A/metabolismo , Escuridão , Hidrogenase/metabolismo , Fotossíntese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...