Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 7: 680, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781534

RESUMO

Oxygen scavengers based on gallic acid (GA) usually contain a base that establishes the alkaline conditions necessary for the humidity-induced scavenger reaction. Here we measured the effect of sodium carbonate (Na2CO3) and sodium hydroxide (NaOH) on the reaction kinetics of such scavengers. The time-dependent oxygen absorption of aqueous GA solutions (pH 2.9-13.8) was determined and the results were described using a second-order kinetic model. We calculated the degree of deprotonation (DoD) of GA in the solutions from the species distribution curves, and assessed the effect of the DoD on the reaction kinetics. This revealed that both the reaction rate coefficient k and the scavenger capacity n were significantly affected by the DoD. If the DoD fell below 0.25, there was no significant reaction. Although k increased with the DoD, n reached a maximum at DoD = 0.6-0.7. In principle, target DoD values can be achieved using any base, but a strong base is more efficient because lower quantities are required. In our experiments, the amount of Na2CO3 required to reach the maximum DoD was more than twice that of NaOH. Our results provide the basis for the functional design of active packaging systems incorporating optimized GA-based oxygen scavengers.

2.
Front Chem ; 6: 587, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538982

RESUMO

Gallic acid (GA) is a potential oxygen scavenger for food packaging applications. In this study we investigated the effect of temperature and relative humidity (RH) on the reaction kinetics of an oxygen scavenger consisting of GA and sodium carbonate. The reaction was described by a second-order kinetic law and the reaction rate coefficient k as well as the scavenger capacity n were determined from experimental data using a multiple-run downhill simplex method. Both the rate coefficient and the scavenger capacity increased significantly with higher temperatures. At 21°C it was shown that both the rate coefficient and the scavenger capacity increased significantly with higher RH. However, below 54% RH, there was no detectable reaction. For optimum scavenger performance we therefore recommend GA-based scavengers for packaging of food products with a high water activity stored at room temperature. Prior to application, the packaging materials with GA-based scavengers can be stored at 21°C and 54% RH without losing their scavenger activity. The results of this study provide the basis for the functional design of active packaging systems with GA-based oxygen scavengers.

3.
Materials (Basel) ; 10(5)2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28772849

RESUMO

Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O2/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (aw > 0.86).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...