Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3085, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600128

RESUMO

Constructing an artificial solid electrolyte interphase (SEI) on lithium metal electrodes is a promising approach to address the rampant growth of dangerous lithium morphologies (dendritic and dead Li0) and low Coulombic efficiency that plague development of lithium metal batteries, but how Li+ transport behavior in the SEI is coupled with mechanical properties remains unknown. We demonstrate here a facile and scalable solution-processed approach to form a Li3N-rich SEI with a phase-pure crystalline structure that minimizes the diffusion energy barrier of Li+ across the SEI. Compared with a polycrystalline Li3N SEI obtained from conventional practice, the phase-pure/single crystalline Li3N-rich SEI constitutes an interphase of high mechanical strength and low Li+ diffusion barrier. We elucidate the correlation among Li+ transference number, diffusion behavior, concentration gradient, and the stability of the lithium metal electrode by integrating phase field simulations with experiments. We demonstrate improved reversibility and charge/discharge cycling behaviors for both symmetric cells and full lithium-metal batteries constructed with this Li3N-rich SEI. These studies may cast new insight into the design and engineering of an ideal artificial SEI for stable and high-performance lithium metal batteries.

2.
ACS Appl Mater Interfaces ; 16(10): 12353-12362, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436097

RESUMO

Rechargeable garnet-based solid-state Li batteries hold immense promise as nonflammable, nontoxic, and high energy density energy storage systems, employing Li7La3Zr2O12 (LLZO) with a garnet-type structure as the solid-state electrolyte. Despite substantial progress in this field, the advancement and eventual commercialization of garnet-based solid-state Li batteries are impeded by void formation at the LLZO/Li interface at practical current densities and areal capacities beyond 1 mA cm-2 and 1 mAh cm-2, respectively, resulting in limited cycling stability and the emergence of Li dendrites. Additionally, developing a fabrication approach for thin LLZO electrolytes to achieve high energy density remains paramount. To address these critical challenges, herein, we present a facile methodology for fabricating self-standing, 50 µm thick, porous LLZO membranes with a small pore size of ca. 2.3 µm and an average porosity of 51%, resulting in a specific surface area of 1.3 µm-1, the highest reported to date. The use of such LLZO membranes significantly increases the Li/LLZO contact area, effectively mitigating void formation. This methodology combines two key elements: (i) the use of small pore formers of ca. 1.5 µm and (ii) the use of ultrafast sintering, which circumvents ceramics overdensification using rapid heating/cooling rates of ca. 50 °C per second. The fabricated porous LLZO membranes demonstrate exceptional cycling stability in a symmetrical Li/LLZO/Li cell configuration, exceeding 600 h of continuous operation at a current density of 0.1 mA cm-2.

3.
ACS Appl Mater Interfaces ; 15(51): 59329-59336, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091363

RESUMO

Metallic zinc (Zn) has been considered one of the most promising anode materials for next-generation aqueous Zn batteries due to its low redox potential and high storage capacity. However, excessive dendrite formation in Zn metal, corrosion, the evolution of hydrogen gas during the cycling process, and the poor Zn-ion (Zn2+) transport from the electrolyte to the electrode limit its practical application. One of the most effective strategies to suppress Zn dendrite growth and promote Zn2+ transport is to introduce suitable protective layers between the Zn metal electrode and the electrolyte. Herein, we mathematically simulated the dynamic interactions between the Zn deposition on the anode and the resulting displacement of a protective layer that covers the anode, the latter of which can simultaneously inhibit Zn dendrite growth and enhance the Zn2+ transport through the interface between the Zn anode and the protective layer. Our simulation results indicate that a protective layer of high Zn2+ diffusivity not only improves the deposition rate of the Zn metal but also prevents dendrite growth by homogenizing the Zn2+ concentration at the anode surface. In addition, it is revealed that the anisotropic Zn2+ diffusivity in the protective layer influences the 2D diffusion of Zn2+. Higher Zn2+ diffusivity perpendicular to the Zn metal surface inhibits dendrite growth, while higher diffusivity parallel to the Zn metal surface promotes dendrite growth. Our work thus provides a fundamental understanding and a design principle for controlling anisotropic Zn2+ diffusion in the protective layer for better suppression of dendrite growth in Zn metal batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...