Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 633058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732165

RESUMO

Sarcolipin (SLN) is a regulator of sarco/endo plasmic reticulum Ca2+-ATPase (SERCA) pump and has been shown to be involved in muscle nonshivering thermogenesis (NST) and energy metabolism. Interestingly, SLN expression is significantly upregulated both during muscle development and in several disease states. However, the significance of altered SLN expression in muscle patho-physiology is not completely understood. We have previously shown that transgenic over-expression of SLN in skeletal muscle is not detrimental, and can promote oxidative metabolism and exercise capacity. In contrast, some studies have suggested that SLN upregulation in disease states is deleterious for muscle function and ablation of SLN can be beneficial. In this perspective article, we critically examine both published and some new data to determine the relevance of SLN expression to disease pathology. The new data presented in this paper show that SLN levels are induced in muscle during systemic bacterial (Salmonella) infection or lipopolysaccharides (LPS) treatment. We also present data showing that SLN expression is significantly upregulated in different types of muscular dystrophies including myotubular myopathy. These data taken together reveal that upregulation of SLN expression in muscle disease is progressive and increases with severity. Therefore, we suggest that increased SLN expression should not be viewed as the cause of the disease; rather, it is a compensatory response to meet the higher energy demand of the muscle. We interpret that higher SLN/SERCA ratio positively modulate cytosolic Ca2+ signaling pathways to promote mitochondrial biogenesis and oxidative metabolism to meet higher energy demand in muscle.

2.
Trends Endocrinol Metab ; 27(12): 881-892, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27637585

RESUMO

Skeletal muscle constitutes ∼40% of body mass and has the capacity to play a major role as thermogenic, metabolic, and endocrine organ. In addition to shivering, muscle also contributes to nonshivering thermogenesis via futile sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity. Sarcolipin (SLN), a regulator of SERCA activity in muscle, plays an important role in regulating muscle thermogenesis and metabolism. Uncoupling of SERCA by SLN increases ATP hydrolysis and heat production, and contributes to temperature homeostasis. SLN also affects whole-body metabolism and weight gain in mice, and is upregulated in various muscle diseases including muscular dystrophy, suggesting a role for SLN during increased metabolic demand. In this review we also highlight the physiological roles of skeletal muscle beyond contraction.


Assuntos
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteolipídeos/metabolismo , Termogênese/fisiologia , Animais , Humanos , Proteínas Musculares/genética , Proteolipídeos/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Termogênese/genética
3.
J Exp Biol ; 218(Pt 15): 2321-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26026037

RESUMO

Neonatal mice have a greater thermogenic need than adult mice and may require additional means of heat production, other than the established mechanism of brown adipose tissue (BAT). We and others recently discovered a novel mediator of skeletal muscle-based thermogenesis called sarcolipin (SLN) that acts by uncoupling sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA). In addition, we have shown that SLN expression is downregulated during neonatal development in rats. In this study we probed two questions: (1) is SLN expression developmentally regulated in neonatal mice?; and (2) if so, will cold adaptation override this? Our data show that SLN expression is higher during early neonatal stages and is gradually downregulated in fast twitch skeletal muscles. Interestingly, we demonstrate that cold acclimation of neonatal mice can prevent downregulation of SLN expression. This observation suggests that SLN-mediated thermogenesis can be recruited to a greater extent during extreme physiological need, in addition to BAT.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteolipídeos/metabolismo , Termogênese/fisiologia , Aclimatação/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Animais Recém-Nascidos , Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Camundongos , Proteínas Musculares/genética , Proteolipídeos/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
4.
PLoS One ; 10(4): e0123875, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859846

RESUMO

The utrophin-dystrophin deficient (DKO) mouse model has been widely used to understand the progression of Duchenne muscular dystrophy (DMD). However, it is unclear as to what extent muscle pathology affects metabolism. Therefore, the present study was focused on understanding energy expenditure in the whole animal and in isolated extensor digitorum longus (EDL) muscle and to determine changes in metabolic enzymes. Our results show that the 8 week-old DKO mice consume higher oxygen relative to activity levels. Interestingly the EDL muscle from DKO mouse consumes higher oxygen per unit integral force, generates less force and performs better in the presence of pyruvate thus mimicking a slow twitch muscle. We also found that the expression of hexokinase 1 and pyruvate kinase M2 was upregulated several fold suggesting increased glycolytic flux. Additionally, there is a dramatic increase in dynamin-related protein 1 (Drp 1) and mitofusin 2 protein levels suggesting increased mitochondrial fission and fusion, a feature associated with increased energy demand and altered mitochondrial dynamics. Collectively our studies point out that the dystrophic disease has caused significant changes in muscle metabolism. To meet the increased energetic demand, upregulation of metabolic enzymes and regulators of mitochondrial fusion and fission is observed in the dystrophic muscle. A better understanding of the metabolic demands and the accompanied alterations in the dystrophic muscle can help us design improved intervention therapies along with existing drug treatments for the DMD patients.


Assuntos
Distrofina/deficiência , Dinâmica Mitocondrial/genética , Distrofia Muscular Animal , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Utrofina/deficiência , Animais , Modelos Animais de Doenças , Dinaminas/genética , Dinaminas/metabolismo , Metabolismo Energético , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Glucose/metabolismo , Hexoquinase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Contração Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Consumo de Oxigênio , Piruvato Quinase/metabolismo , Ácido Pirúvico/metabolismo
5.
J Appl Physiol (1985) ; 118(8): 1050-8, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25701006

RESUMO

Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (Sln(OE)) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that Sln(OE) mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that Sln(OE) EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and Sln(OE) EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in Sln(OE) EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from Sln(OE) mice fatigued significantly less than WT muscles. Interestingly, Sln(OE) muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in Sln(OE) EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of Sln(OE) compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics.


Assuntos
Tolerância ao Exercício , Proteínas Musculares/fisiologia , Músculo Esquelético/fisiologia , Proteolipídeos/fisiologia , Animais , Cálcio/metabolismo , Calsequestrina/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fadiga Muscular , Miosinas/metabolismo , Condicionamento Físico Animal , Ácido Pirúvico/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
6.
J Biol Chem ; 290(17): 10840-9, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25713078

RESUMO

Sarcolipin (SLN) is a novel regulator of sarcoplasmic reticulum Ca(2+) ATPase (SERCA) in muscle. SLN binding to SERCA uncouples Ca(2+) transport from ATP hydrolysis. By this mechanism, SLN promotes the futile cycling of SERCA, contributing to muscle heat production. We recently showed that SLN plays an important role in cold- and diet-induced thermogenesis. However, the detailed mechanism of how SLN regulates muscle metabolism remains unclear. In this study, we used both SLN knockout (Sln(-/-)) and skeletal muscle-specific SLN overexpression (Sln(OE)) mice to explore energy metabolism by pair feeding (fixed calories) and high-fat diet feeding (ad libitum). Our results show that, upon pair feeding, Sln(OE) mice lost weight compared with the WT, but Sln(-/-) mice gained weight. Interestingly, when fed with a high-fat diet, Sln(OE) mice consumed more calories but gained less weight and maintained a normal metabolic profile in comparison with WT and Sln(-/-) mice. We found that oxygen consumption and fatty acid oxidation were increased markedly in Sln(OE) mice. There was also an increase in both mitochondrial number and size in Sln(OE) muscle, together with increased expression of peroxisome proliferator-activated receptor δ (PPARδ) and PPAR γ coactivator 1 α (PGC1α), key transcriptional activators of mitochondrial biogenesis and enzymes involved in oxidative metabolism. These results, taken together, establish an important role for SLN in muscle metabolism and energy expenditure. On the basis of these data we propose that SLN is a novel target for enhancing whole-body energy expenditure.


Assuntos
Metabolismo Basal/fisiologia , Metabolismo Energético/fisiologia , Proteínas Musculares/metabolismo , Obesidade/prevenção & controle , Proteolipídeos/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia , Ácidos Graxos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Oxirredução , Consumo de Oxigênio , PPAR delta/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteolipídeos/deficiência , Proteolipídeos/genética , Receptores Adrenérgicos beta 2/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima , Redução de Peso
8.
Nat Med ; 18(10): 1575-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22961106

RESUMO

The role of skeletal muscle in nonshivering thermogenesis (NST) is not well understood. Here we show that sarcolipin (Sln), a newly identified regulator of the sarco/endoplasmic reticulum Ca(2+)-ATPase (Serca) pump, is necessary for muscle-based thermogenesis. When challenged to acute cold (4 °C), Sln(-/-) mice were not able to maintain their core body temperature (37 °C) and developed hypothermia. Surgical ablation of brown adipose tissue and functional knockdown of Ucp1 allowed us to highlight the role of muscle in NST. Overexpression of Sln in the Sln-null background fully restored muscle-based thermogenesis, suggesting that Sln is the basis for Serca-mediated heat production. We show that ryanodine receptor 1 (Ryr1)-mediated Ca(2+) leak is an important mechanism for Serca-activated heat generation. Here we present data to suggest that Sln can continue to interact with Serca in the presence of Ca(2+), which can promote uncoupling of the Serca pump and cause futile cycling. We further show that loss of Sln predisposes mice to diet-induced obesity, which suggests that Sln-mediated NST is recruited during metabolic overload. These data collectively suggest that SLN is an important mediator of muscle thermogenesis and whole-body energy metabolism.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Proteínas Musculares/metabolismo , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Termogênese/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Metabolismo Energético/genética , Células HEK293 , Humanos , Canais Iônicos/deficiência , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Obesidade/genética , Proteolipídeos/deficiência , Proteolipídeos/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteína Desacopladora 1
9.
J Cell Biol ; 196(4): 497-511, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22351927

RESUMO

Although the physiological basis of canonical or classical IκB kinase ß (IKKß)-nuclear factor κB (NF-κB) signaling pathway is well established, how alternative NF-κB signaling functions beyond its role in lymphoid development remains unclear. In particular, alternative NF-κB signaling has been linked with cellular metabolism, but this relationship is poorly understood. In this study, we show that mice deleted for the alternative NF-κB components IKKα or RelB have reduced mitochondrial content and function. Conversely, expressing alternative, but not classical, NF-κB pathway components in skeletal muscle stimulates mitochondrial biogenesis and specifies slow twitch fibers, suggesting that oxidative metabolism in muscle is selectively controlled by the alternative pathway. The alternative NF-κB pathway mediates this specificity by direct transcriptional activation of the mitochondrial regulator PPAR-γ coactivator 1ß (PGC-1ß) but not PGC-1α. Regulation of PGC-1ß by IKKα/RelB also is mammalian target of rapamycin (mTOR) dependent, highlighting a cross talk between mTOR and NF-κB in muscle metabolism. Together, these data provide insight on PGC-1ß regulation during skeletal myogenesis and reveal a unique function of alternative NF-κB signaling in promoting an oxidative metabolic phenotype.


Assuntos
Respiração Celular , Quinase I-kappa B/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , NF-kappa B/metabolismo , Animais , Western Blotting , Células Cultivadas , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Técnicas Imunoenzimáticas , Luciferases/metabolismo , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Mioblastos/citologia , NF-kappa B/genética , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...