Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 59(17): 5282-5289, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32543551

RESUMO

Spectrally narrowband imaging in remote sensing applications can be advantageous for detecting atomic emission features. This is especially useful in detecting specific constituents within rocket plumes, which are challenging to discern from naturally occurring sunglints. In this paper, we demonstrate a dual-beam technique, implemented with a Wollaston prism, for calibrating a Voigt magneto-optical filter for a linear polarizer's finite extinction ratio, as well as optical misalignment between the linear polarizers' transmission axes. Such a strategy would be key towards expanding the filter's field of view while maintaining its classification capabilities. Validation of the potassium Voigt filter is demonstrated using the simulation tool ElecSus in combination with a potassium hollow cathode lamp. RMS error between the filter's temperature response and that of the simulation was approximately 2%. We then demonstrate the detection of a potassium model rocket motor outdoors alongside a sunglint. Results indicate a 20-fold increase in contrast when using our dual-beam calibration strategy.

2.
Appl Opt ; 58(33): 9310-9317, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31873611

RESUMO

Measuring the radial velocity of an object can be achieved by quantifying the Doppler shift of Fraunhofer lines. Measurements are typically made using high-resolution conventional spectroscopy, in which the Doppler shift is calculated numerically on a computer. An alternative technique includes cross-correlation spectroscopy, which performs an optical correlation of the incident spectrum against a reference spectrum embedded in the instrument. Many existing correlation spectrometers leverage a chrome mask and obtain a single beam measurement, making the sensors more sensitive to atmospheric turbulence without moving parts. In this paper, we present a static dual-beam polarization-based technique for acquiring cross-correlation spectra that is insensitive to atmospheric turbulence and contains no moving parts. The instrument is based on acquiring light both inside and outside of the solar Fraunhofer lines using a twisted nematic liquid-crystal spatial light modulator. Correlation spectra can be calculated as a ratio of these two components. A model of the dual-beam cross-correlation spectrometer is presented and subsequently validated with experimental observations of Venus. Radial velocity accuracies, as calculated against reference ephemerides, yielded an absolute error less than 0.24%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...