Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 202(9): 2747-2759, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902902

RESUMO

Immune and metabolic pathways collectively influence host responses to microbial invaders, and mutations in one pathway frequently disrupt activity in another. We used the Drosophila melanogaster model to characterize metabolic homeostasis in flies with modified immune deficiency (IMD) pathway activity. The IMD pathway is very similar to the mammalian TNF-α pathway, a key regulator of vertebrate immunity and metabolism. We found that persistent activation of IMD resulted in hyperglycemia, depleted fat reserves, and developmental delays, implicating IMD in metabolic regulation. Consistent with this hypothesis, we found that imd mutants weigh more, are hyperlipidemic, and have impaired glucose tolerance. To test the importance of metabolic regulation for host responses to bacterial infection, we challenged insulin pathway mutants with lethal doses of several Drosophila pathogens. We found that loss-of-function mutations in the insulin pathway impacted host responses to infection in a manner that depends on the route of infection and the identity of the infectious microbe. Combined, our results support a role for coordinated regulation of immune and metabolic pathways in host containment of microbial invaders.


Assuntos
Homeostase/imunologia , Imunidade Inata , Mutação , Transdução de Sinais/imunologia , Animais , Drosophila melanogaster , Homeostase/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...