Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 87(1): 77-86, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25338671

RESUMO

S-Adenosylmethionine (SAMe), the principal methyl donor that is available as a nutritional supplement, and its metabolite methylthioadenosine (MTA) exert chemopreventive properties against liver and colon cancer in experimental models. Both agents reduced ß-catenin expression on immunohistochemistry in a murine colitis-associated colon cancer model. In this study, we examined the molecular mechanisms involved. SAMe or MTA treatment in the colitis-associated cancer model lowered total ß-catenin protein levels by 47 and 78%, respectively. In an orthotopic liver cancer model, increasing SAMe levels by overexpressing methionine adenosyltransferase 1A also reduced total ß-catenin levels by 68%. In both cases, lower cyclin D1 and c-Myc expression correlated with lower ß-catenin levels. In liver (HepG2) and colon (SW480, HCT116) cancer cells with constitutively active ß-catenin signaling, SAMe and MTA treatment inhibited ß-catenin activity by excluding it from the nuclear compartment. However, in liver (Huh-7) and colon (RKO) cancer cells expressing wild-type Wnt/ß-catenin, SAMe and MTA accelerated ß-catenin degradation by a glycogen synthase kinase 3-ß-dependent mechanism. Both agents lowered protein kinase B activity, but this was not mediated by inhibiting phosphoinositide 3-kinase. Instead, both agents increased the activity of protein phosphatase 2A, which inactivates protein kinase B. The effect of MTA on lowering ß-catenin is direct and not mediated by its conversion to SAMe, as blocking this conversion had no influence. In conclusion, SAMe and MTA inhibit Wnt/ß-catenin signaling in colon and liver cancer cells regardless of whether this pathway is aberrantly induced, making them ideal candidates for chemoprevention and/or chemotherapy in these cancers.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Desoxiadenosinas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Experimentais/tratamento farmacológico , S-Adenosilmetionina/farmacologia , Tionucleosídeos/farmacologia , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Neoplasias Experimentais/patologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...