Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134167, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598880

RESUMO

This study investigated the leaching of phthalate and non-phthalate plasticizers from polyvinyl chloride microplastics (MPs) into sediment and their degradation over a 30-d period via abiotic and biotic processes. The results showed that 3579% of plasticizers were released into the sediment from the MPs and > 99.9% degradation was achieved. Although a significantly higher degradation was found in plasticizer-added microcosms under biotic processes (overall, 94%), there was a noticeable abiotic loss (72%), suggesting that abiotic processes also play a role in plasticizer degradation. Interestingly, when compared with the initial sediment-water partitioning for plasticizers, the partition constants for low-molecular-weight compounds decreased in both microcosms, whereas those for high-molecular-weight compounds increased after abiotic degradation. Furthermore, changes in the bacterial community, abundance of plasticizer-degrading bacterial populations, and functional gene profiles were assessed. In all the microcosms, a decrease in bacterial community diversity and a notable shift in bacterial composition were observed. The enriched potential plasticizer-degrading bacteria were Arthrobacter, Bacillus, Desulfovibrio, Desulfuromonas, Devosia, Gordonia, Mycobacterium, and Sphingomonas, among which Bacillus was recognized as the key plasticizer degrader. Overall, these findings shed light on the factors affecting plasticizer degradation, the microbial communities potentially involved in biodegradation, and the fate of plasticizers in the environment.


Assuntos
Bactérias , Sedimentos Geológicos , Microplásticos , Ácidos Ftálicos , Plastificantes , Cloreto de Polivinila , Poluentes Químicos da Água , Cloreto de Polivinila/química , Plastificantes/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Ácidos Ftálicos/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Biodegradação Ambiental
2.
Sci Total Environ ; 874: 162412, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36858231

RESUMO

In the present study, the migration of plasticizers from modeled and commercial polyvinyl chloride (mPVC and cPVC, respectively) to poly(dimethylsiloxane) via artificial sebum was assessed to mimic the dermal migration of plasticizers. In addition, the various factors affecting migration of phthalic acid esters (PAEs) from diverse PVC products were investigated. The migrated mass and migration ratio of PAEs increased but the migration rate decreased over time. The migration rate increased with sebum mass, contact time, and temperature but decreased under higher pressure. Low-molecular-weight PAEs (dimethyl phthalate and diethyl phthalate) migrated in higher amounts than high-molecular-weight PAEs (dicyclohexyl phthalate [DCHP] and diisononyl phthalate [DINP]). Diffusion of all PAEs in mPVC increased with temperature, with diffusion coefficients ranging from 10-13 to 10-15, 10-12 to 10-14, and 10-10 to 10-12 cm2·s-1 at 25 °C, 40 °C, and 60 °C, respectively; the enthalpy of activation ranged between 127 and 194 kJ·mol-1. Moreover, migration depended on total PAE content of the product, as the diffusion coefficient for DINP in cPVC (softer PVC) was approximately three orders of magnitude higher than that for DINP in mPVC (harder PVC); this may be due to the increase in free volume with increasing plasticizer content. Finally, the daily exposure doses of the plasticizers were estimated. These findings will be helpful for estimating dermal exposure risk.


Assuntos
Ácidos Ftálicos , Plastificantes , Cloreto de Polivinila , Sebo
3.
Aquat Toxicol ; 237: 105900, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34166955

RESUMO

Globally, perovskite solar cells (PSCs) represent a third-generation photovoltaic technology that is being increasingly implemented and commercialized. However, the biological impacts of leachates from PSCs are poorly understood. Therefore, the aim of this study was to investigate the ecotoxicity of PSC leachates compared with that of commercial Si-based solar cell (SBSC) leachates. We performed leaching assessments and aquatic bioassays using internationally recommended test species and measured and compared the ecotoxicity of PSC and SBSC leachates. As a result of the leaching analyses, Si, Pb, and Al were found to be the most leached elements from broken PSCs and SBSCs. The bioassays indicated that polycrystalline SBSC (p-Si) and monocrystalline SBSC (m-Si) leachates were more toxic to fish embryos than the PSC leachates and that water fleas were sensitive to m-Si leachates, but less sensitive to PSC and p-Si leachates. In addition, principle component analyses indicated that the ecotoxicity of solar cell leachates was related to either the Pb or Si content. This is the first comparative study of the potential ecotoxicity of PSC and SBSC leachates in aquatic ecosystems, and the results of which can be used in the environmentally safe commercialization of solar cells.


Assuntos
Ecossistema , Poluentes Químicos da Água , Animais , Compostos de Cálcio , Óxidos , Silício , Titânio , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...