Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(11): 2264-2290, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38671253

RESUMO

Transient receptor potential (TRP) ion channels are involved in the surveillance or regulation of the acid-base balance. Here, we demonstrate that weak carbonic acids, including acetic acid, lactic acid, and CO2 activate and sensitize TRPV2 through a mechanism requiring permeation through the cell membrane. TRPV2 channels in cell-free inside-out patches maintain weak acid-sensitivity, but protons applied on either side of the membrane do not induce channel activation or sensitization. The involvement of proton modulation sites for weak acid-sensitivity was supported by the identification of titratable extracellular (Glu495, Glu561) and intracellular (His521) residues on a cryo-EM structure of rat TRPV2 (rTRPV2) treated with acetic acid. Molecular dynamics simulations as well as patch clamp experiments on mutant rTRPV2 constructs confirmed that these residues are critical for weak acid-sensitivity. We also demonstrate that the pore residue Glu609 dictates an inhibition of weak acid-induced currents by extracellular calcium. Finally, TRPV2-expression in HEK293 cells is associated with an increased weak acid-induced cytotoxicity. Together, our data provide new insights into weak acids as endogenous modulators of TRPV2.


Assuntos
Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/química , Humanos , Células HEK293 , Animais , Ratos , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica , Cálcio/metabolismo , Técnicas de Patch-Clamp , Ácidos/metabolismo
2.
Br J Pharmacol ; 180(17): 2214-2229, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36928865

RESUMO

BACKGROUND AND PURPOSE: Itch is associated with several pathologies and is a common drug-induced side effect. Chloroquine (CQ) is reported to induce itch by activating the Mas-related G protein-coupled receptor MrgprA3 and subsequently TRPA1. In this study, we demonstrate that CQ employs at least two MrgprA3-independent mechanisms to activate or sensitize TRPA1 and TRPV1. EXPERIMENTAL APPROACH: Patch clamp and calcium imaging were utilized to examine effects of CQ on TRPA1 and TRPV1 expressed in HEK 293T cells. KEY RESULTS: In calcium imaging, CQ induces a concentration-dependent but MrgprA3-independent activation of TRPA1 and TRPV1. Although CQ itself inhibits TRPA1 and TRPV1 in patch clamp recordings, co-application of CQ and ultraviolet A (UVA) light evokes membrane currents through both channels. This effect is inhibited by the reducing agent dithiothreitol (DTT) and is reduced on mutants lacking cysteine residues accounting for reactive oxygen species (ROS) sensitivity. The combination of CQ and UVA light triggers an accumulation of intracellular ROS, removes fast inactivation of voltage-gated sodium currents and activates TRPV2. On the other hand, CQ is a weak base and induces intracellular alkalosis. Intracellular alkalosis can activate TRPA1 and TRPV1, and CQ applied at alkaline pH values indeed activates both channels. CONCLUSION AND IMPLICATIONS: Our data reveal novel pharmacological properties of CQ, allowing activation of TRPA1 and TRPV1 via photosensitization as well as intracellular alkalosis. These findings add more complexity to the commonly accepted dogma that CQ-induced itch is specifically mediated by MrgprA3 coupling to TRPA1.


Assuntos
Cloroquina , Canais de Potencial de Receptor Transitório , Humanos , Cloroquina/efeitos adversos , Canal de Cátion TRPA1 , Células Receptoras Sensoriais , Cálcio/metabolismo , Espécies Reativas de Oxigênio , Prurido/tratamento farmacológico , Canais de Cátion TRPV/fisiologia , Gânglios Espinais/metabolismo
3.
Neurosci Lett ; 789: 136878, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36115537

RESUMO

The naturally occurring coumarin osthole has antipruritic properties, and recent reports suggest that this effect is due an inhibition or desensitization of the cation channels TRPV1 and TRPV3. Osthole was also suggested to activate TRPA1, an effect that should rather be pruritic than antipruritic. Here we characterized the effects of osthole on TRPA1 by means of ratiometric calcium imaging and patch clamp electrophysiology. In HEK 293 expressing human (h) TRPA1, osthole induced a concentration-dependent increase in intracellular calcium that was inhibited by the TRPA1-inhibitor A967079. In mouse dorsal root ganglion (DRG) cells, osthole induced a strong calcium-influx that was partly mediated by TRPA1. Osthole evoked fully reversible membrane currents in whole-cell as well as cell-free inside-out recordings on hTRPA1. Osthole failed to activate the mutant hTRPA1-S873V/T874L, a previously described binding site for the non-electrophilic TRPA1-agonists menthol and carvacrol. The combined application of osthole and carvacrol diminished channel activation, suggesting a competitive binding. Finally, osthole failed to activate TRPM8 and TRPV4 but induced a modest activation of hTRPV1 expressed in HEK 293 cells. We conclude that osthole is a potent non-electrophilic agonist of TRPA1. The relevance of this property for the antipruritic effects needs to be further explored.


Assuntos
Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório , Animais , Antipruriginosos/farmacologia , Cálcio/metabolismo , Cumarínicos/farmacologia , Cimenos , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Mentol/farmacologia , Camundongos , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
4.
Cell Calcium ; 96: 102391, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33752082

RESUMO

Redox-sensitivity is a common property of several transient receptor potential (TRP) ion channels. Oxidants and UVA-light activate TRPV2 by oxidizing methionine pore residues which are conserved in the capsaicin-receptor TRPV1. However, the redox-sensitivity of TRPV1 is regarded to depend on intracellular cysteine residues. In this study we examined if TRPV1 is gated by UVA-light, and if the conserved methionine residues are relevant for redox-sensitivity of TRPV1. Patch clamp recordings were performed to explore wildtype (WT) and mutants of human TRPV1 (hTRPV1). UVA-light induced hTRPV1-mediated membrane currents and potentiated both proton- and heat-evoked currents. The reducing agent dithiothreitol (DTT) prevented and partially reversed UVA-light induced sensitization of hTRPV1. UVA-light induced sensitization was reduced in the mutant hTRPV1-C158A/C387S/C767S (hTRPV1-3C). The remaining sensitivity to UVA-light of hTRRPV1-3C was not further reduced upon exchange of the methionine residues M568 and M645. While UVA-induced sensitization was reduced in the protein kinase C-insensitive mutant hTRPV1-S502A/S801A, the PKC-inhibitors chelerythrine chloride, staurosporine and Gö6976 did not reduce UVA-induced effects on hTRPV1-WT. While hTRPV1-3C was insensitive to the cysteine-selective oxidant diamide, it displayed a residual sensitivity to H2O2 and chloramine-T. However, the exchange of M568 and M645 in hTRPV1-3C did not further reduce these effects. Our data demonstrate that oxidants and UVA-light gate hTRPV1 by cysteine-dependent as well as cysteine-independent mechanisms. In contrast to TRPV2, the methionine residues 568 and 645 seem to be of limited relevance for redox-sensitivity of hTRPV1. Finally, UVA-light induced gating of hTRPV1 does not seem to require activation of protein kinase C.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Oxidantes/farmacologia , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/efeitos da radiação , Raios Ultravioleta , Cloraminas/farmacologia , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologia , Ativação do Canal Iônico/fisiologia , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Canais de Cátion TRPV/agonistas , Compostos de Tosil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...