Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(18): 3613-3624, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38662507

RESUMO

High-energy-density aluminum nanoparticles (AlNPs) upon thermal annealing followed by superquenching result in elevated stress levels in the metallic core and reduced surface energy at the core-shell interface. Isomer-selective vacuum ultraviolet-based photoionization mass spectrometry coupled to a high-temperature chemical microreactor reveals that these stress-altered AlNPs (SA-AlNPs) exhibit distinctive temperature-dependent reactivities toward catalytic decomposition of the hydrocarbon jet fuel exo-tetrahydrodicyclopentadiene (JP-10, C10H16) compared to untreated AlNPs (UN-AlNPs). SA-AlNPs show a delayed initiation of the decomposition for JP-10 by 200 K relative to the UN-AlNPs; however, the full decomposition is achieved at a 100 K lower temperature. Furthermore, there are fewer oxygenated products that are generated from the alumina surface-induced heterogeneous oxidation process and a larger fraction of closed- and open-shell hydrocarbons. Chemical insight bridging the reactivity order of SA-AlNPs at low and high temperatures, simultaneously, is obtained via a detailed examination of the product branching ratios obtained in this study.

2.
J Phys Chem A ; 128(9): 1665-1684, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38383985

RESUMO

The oxidation of gas-phase exo-tetrahydrodicyclopentadiene (JP-10, C10H16) over aluminum nanoparticles (AlNP) has been explored between a temperature range of 300 and 1250 K with a novel chemical microreactor. The results are compared with those obtained from chemical microreactor studies of helium-seeded JP-10 and of helium-oxygen-seeded JP-10 without AlNP to gauge the effects of molecular oxygen and AlNP, respectively. Vacuum ultraviolet (VUV) photoionization mass spectrometry reveals that oxidative decomposition of JP-10 in the presence of AlNP is lowered by 350 and 200 K with and without AlNP, respectively, in comparison with pyrolysis of the fuel. Overall, 63 nascent gas-phase products are identified through photoionization efficiency (PIE) curves; these can be categorized as oxygenated molecules and their radicals as well as closed-shell hydrocarbons along with hydrocarbon radicals. Quantitative branching ratios of the products reveal diminishing yields of oxidized species and enhanced branching ratios of hydrocarbon species with the increase in temperature. While in the low-temperature regime (300-1000 K), AlNP solely acts as an efficient heat transfer medium, in the higher-temperature regime (1000-1250 K), chemical reactivity is triggered, facilitating the primary decomposition of the parent JP-10 molecule. This enhanced reactivity of AlNP could plausibly be linked to the exposed reactive surface of the aluminum (Al) core generated upon the rupture of the alumina shell material above the melting point of the metal (Al).

3.
J Phys Chem Lett ; 14(41): 9341-9350, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37820371

RESUMO

High energy density aluminum nanoparticles (AlNPs) have been at the center of attention as additives to hydrocarbon jet fuels like exo-tetrahydrodicyclopentadiene (JP-10, C10H16) aiming at the superior performance of volume-limited air-breathing propulsion systems. However, a fundamental understanding of the ignition and combustion chemistry of JP-10 in the presence of AlNPs has been elusive. Exploiting an isomer-selective comprehensive identification of the decomposition products in a newly designed high-temperature chemical microreactor coupled to vacuum ultraviolet photoionization, we reveal an active low-temperature heterogeneous surface chemistry commencing at 650 K involving the alumina (Al2O3) shell. Contrary to textbook knowledge of an "inactive alumina surface", this unconventional reactivity, where oxygen is transferred from alumina to JP-10, leads to generating cyclic, oxygenated organics like phenol (C6H5OH) and 2,4-cyclopentadiene-1-one (C5H4O)─key tracers of an alumina-mediated interfacial chemistry. This counterintuitive reactivity transforms our knowledge of the (catalytic) processes of alumina-coated AlNPs on the molecular level.

4.
J Phys Chem Lett ; 14(11): 2722-2730, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36893320

RESUMO

Aluminum iodate hexahydrate ([Al(H2O)6](IO3)3(HIO3)2; AIH) represents a novel, oxidizing material for energetic applications. Recently, AIH was synthesized to replace the aluminum oxide passivation layer of aluminum nanoenergetic materials (ALNEM). The design of reactive coatings for ALNEM-doped hydrocarbon fuels in propulsion systems requires fundamental insights of the elementary steps of the decomposition of AIH. Here, through the levitation of single AIH particles in an ultrasonic field, we reveal a three-stage decomposition mechanism initiated by loss of water (H2O) accompanied by an unconventional inverse isotopic effect and ultimate breakdown of AIH into gaseous elements (iodine and oxygen). Hence, AIH coating on aluminum nanoparticles replacing the oxide layer would provide a critical supply of oxygen in direct contact with the metal surface thus enhancing reactivity and reducing ignition delays, further eliminating decades-old obstacles of passivation layers on nanoenergetic materials. These findings demonstrate the potential of AIH to aid in the development of next-generation propulsion systems.

5.
J Phys Chem Lett ; 13(41): 9777-9785, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36226837

RESUMO

Titanium (Ti), aluminum (Al), and boron (B) reactive mixed-metal nanopowders (Ti-Al-B RMNPs) represent attractive additives to hydrocarbon fuels such as exo-tetrahydrodicyclopentadiene (C10H16; JP-10) enhancing the limited volumetric energy densities of traditional hydrocarbons, but fundamental mechanisms and combustion stages in the oxidation have been obscure. This understanding is of vital significance in the development of next-generation propulsion systems and energy-generation technologies. Here, we expose distinct oxidation stages of single droplets of JP-10 doped with Ti-Al-B-RMNP exploiting innovative ultrasonic levitator technology coupled with time-resolved spectroscopic (UV-vis) and imaging diagnostics (optical and infrared). Two spatially and temporally distinct stages of combustion define a glow flame stage in which JP-10 and nanoparticles combust via a homogeneous gas phase (Al) and heterogeneous gas-surface oxidation (Ti, B) and a slower diffusion flame stage associated with the oxidation of JP-10. These findings enable the development of next-generation RMNP fuel additives with superior payload delivery capabilities.

6.
Phys Chem Chem Phys ; 24(19): 11501-11509, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35403629

RESUMO

Harnessing aluminum oxidation energy requires navigating the particle's passivation shell composed of alumina. The shell is a barrier to aluminum oxidation but can also exothermically react with halogenated species and therefore contribute to the overall energy generated during aluminum particle combustion. Fluorination reactions with alumina have been studied because fluorine is abundant in binder formulations that commonly surround aluminum particles in an energetic mixture. However, iodine has emerged as an alternative halogenated-based binder or oxidizer because iodine gas provides ancillary benefits such as chemical neutralization of biological agents or sterilization of contaminated environments. This study used density functional theory (DFT) calculations to evaluate potential reaction pathways for aluminum-iodine combustion. Relative to fluorinated fragments such as HF and F-, the adsorption energies associated with HI and I- are nearly triple the exchange reaction energy available from fluorination reactions with alumina (-189 and -278 kJ mol-1 for HI and I-, respectively). However, exchange reactions between iodinated species and the alumina surface are energetically unfavorable. These results explain that through adsorption, alumina surface exothermic reactions with iodine are more energetic than with fluorine fragments. Experiments performed with differential scanning calorimetry (DSC) confirm the higher magnitude of energy generated for iodination compared with fluorination reactions with alumina. Additionally, strong adsorption energies can promote synthesis of new shell chemistries. Adsorption in solution will promote alumina dissolution and iodine precipitation reactions to produce hydroxyl complexes and iodinated species synthesized on the surface of the particle, thereby replacing alumina with alternative passivation shell chemistry.

7.
Appl Opt ; 60(16): 4976-4985, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34143061

RESUMO

This study examines the thermal behavior of a laser ignited thermite composed of aluminum and bismuth trioxide. Temperature data were collected during the reaction using a four-color pyrometer and a high-speed color camera modified for thermography. The two diagnostics were arranged to collect data simultaneously, with similar fields of view and with similar data acquisition rates, so that the two techniques could be directly compared. Results show that at initial and final stages of the reaction, a lower signal-to-noise ratio affects the accuracy of the measured temperatures. Both diagnostics captured the same trends in transient thermal behavior, but the average temperatures measured with thermography were about 750 K higher than those from the pyrometer. This difference was attributed to the lower dynamic range of the thermography camera's image sensor, which was unable to resolve cooler temperatures in the field of view as well as the photomultiplier tube sensors in the pyrometer. Overall, while the camera could not accurately capture the average temperature of a scene, its ability to capture peak temperatures and spatial data make it the preferred method for tracking thermal behavior in thermite reactions.

8.
ACS Appl Mater Interfaces ; 13(15): 18358-18364, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33821609

RESUMO

Surface modification is used to dramatically alter the thermal properties of a bulk metallic material. Thermal barrier coatings (TBCs) are typically applied using spray deposition or laser-based techniques to create a ceramic coating on a metal substrate. In this study, an effective TBC is created directly on a metallic substrate by inducing surface chemical reactions. Aluminum-zirconium (Al-Zr) substrates are used to induce surface-limited reactions that produce a 75-80% decrease in bulk thermal conductivity and diffusivity, respectively. The substrates are cylindrical disks 12.6 mm diameter and 2 mm thickness. Thermal properties are measured using laser flash analysis (LFA) at incrementally elevated temperatures. Focused ion beam (FIB) slicing of the substrate coupled with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) show that the substrate oxidized only along the outer 20 µm of the bulk surface. The layer thickness is significantly less than typical TBCs that can range from 50 to 300 µm yet the 20 µm coating still achieves a dramatic reduction in thermal transport properties. Additionally, thermal analysis reveals a sequence of exothermic reactions starting at 439 °C that include both intermetallic (i.e., ZrAl3) and oxidation (i.e., Al2O3 and ZrO) reactions suggesting continuous surface bonding at the coating-metal interface. The onset of exothermic activity coincides with the transition in thermal properties measured using LFA. These results show that surface oxidation reactions could be used to dramatically alter the thermal transport properties of a metal substrate.

9.
J Chem Phys ; 154(10): 104308, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722014

RESUMO

Density functional theory calculations were used to reveal the mechanism for the fluorination reaction of active Lewis acid sites on alumina structures, which is important in understanding the pyrophoric processes involving Al particles. In this reaction, hydroxyl groups of active sites are replaced by fluorine anions. Alumina structures were represented by three aluminum aqua hydroxo clusters (labeled AlOOH), in which the Al atom had different coordination spheres, particularly four, five, or six. The F-bearing molecules HF, CH3F, and CF4 were taken as reactants for the fluorination reactions. The overall reaction was represented by four reaction steps as follows: (i) formation of the reaction complex, (ii) activation of the transition state (TS), (iii) deactivation of the TS with a formation of the product complex, and (iv) its decomplexation to individual products. The active reaction center of the TS structure is four-membered, in which two bonds break heterolytically and two form. The lowest reaction barriers were observed for the HF molecule, while the two other molecules had significantly higher reaction barriers. Similarly, the largest overall reaction energies (in absolute value) were found for HF, especially for the five- and six-coordinated Al centers. While the positive charge on the Al center remained almost constant throughout the reaction steps, large charge changes were observed for carbon bearing molecules with a formation of the carbenium cations in the TS step. Realizing the important role of HF in promoting exothermic reactions will enable new molecular design strategies for transforming energy release properties of aluminum powder fuels.

10.
J Phys Chem A ; 124(8): 1489-1507, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32065522

RESUMO

Addition of high-energy-density materials such as aluminum (Al) microparticles or nanoparticles to liquid propellants potentially improves performance of the fuel. We report on the effects of untreated, prestressed, and superquenched aluminum particles with diameters of 100 nm, 250 nm, 500 nm, 1.6 µm, and 8.8 µm on the combustion of JP-10 droplets acoustically levitated in an oxygen-argon atmosphere. Ignition was initiated by a carbon dioxide laser, and the resulting oxidation processes were traced by Raman, Fourier-transform infrared (FTIR), and ultraviolet-visible (UV-vis) spectroscopies together with high-speed optical and IR thermal-imaging cameras. The UV-vis emission spectra reveal that the key reactive radical intermediates hydroxyl (OH), methylidyne (CH), dicarbon (C2), aluminum monoxide (AlO), and aluminum monohydride (AlH) were formed in addition to atomic aluminum (Al) and the final oxidation products of JP-10, namely, water (H2O) and carbon dioxide (CO2). The Al particles facilitated ignition of the JP-10 droplets and produced higher temperatures in the combustion process of up to typically 2600 K. The effect of the Al particles on the ignition and maximum flame temperatures increased as the diameters reduced. The different stress treatments did not produce observable changes for the ignition or combustion of the droplets, which indicates that the liquid propellant was not significantly affected by manipulating the mechanical properties of the fuel particle additive. The initiation and enhancement of the combustion were a consequence of forming highly reactive atomic oxygen (O) and aluminum monoxide (AlO) radicals in the reaction of aluminum atoms with molecular oxygen in the gas phase. These radicals initiate the degradation of JP-10 via atomic hydrogen abstraction forming the hydroxyl (OH) and aluminum hydroxide (AlOH) radicals in reactions which are mainly exothermic by up to 68 kJ mol-1. In contrast, hydrogen abstractions from JP-10 by molecular oxygen or atomic aluminum are strongly endothermic by up to 236 kJ mol-1, thus making these reactions less competitive. The generation of C10H15 hydrocarbon radicals from the JP-10 initiates successive oxidations and chain reactions with molecular oxygen leading eventually to carbon dioxide and water. These combined experimental results provide insight into how aluminum particles facilitate the oxidation and reaction mechanisms of JP-10 droplets.

11.
RSC Adv ; 10(24): 14403-14409, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498500

RESUMO

Iodine containing oxidizers are especially effective for neutralizing spore forming bacteria by generating iodine gas as a long-lived bactericide. Metal iodates have been shown to be strong oxidizers when combined with aluminum fuel particles for energy generating applications. One method to produce metal iodates in situ is by using metal oxides and an energetic salt: aluminum iodate hexahydrate (Al(H2O)6(IO3)3(HIO3)2), which is called AIH. In this study, the thermal stability and reactivity of AIH with metal oxides commonly used in energetic formulations was investigated. Three metal oxides: bismuth(iii) oxide (Bi2O3), copper(ii) oxide (CuO), and iron(iii) oxide (Fe2O3) were investigated because of their different oxygen release properties. Each metal oxide powder was combined with AIH powder. Thermal stability and reactivity were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) and reactive properties calculated to supplement experimental observations. Powder X-ray diffraction (XRD) was also used to identify the product species at various stages of heating corresponding to exothermic activity. Results show that AIH decomposition is entirely endothermic but, with the addition of metal oxide powder to AIH, exothermic reactions transform metal oxides into more stable metal iodates. This analysis provides an understanding of the compatibility of AIH with metal oxides and contributes to the development of novel energetic composites that have the advantages of both thermal and biocidal mechanisms for spore neutralization.

12.
Nanomaterials (Basel) ; 9(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635384

RESUMO

Artificial tissue materials usually suffer properties and structure loss over time. As a usual strategy, a new substitution is required to replace the worn one to maintain the functions. Although several approaches have been developed to restore the mechanical properties of hydrogels, they require direct heating or touching, which cannot be processed within the body. In this manuscript, a photothermal method was developed to restore the mechanical properties of the tough hydrogels by using near infrared (NIR) laser irradiation. By adding the porphyrin decorated graphene oxide (PGO) as the nanoreinforcer and photothermal agent into carrageenan/polyacrylamide double network hydrogels (PDN), the compressive strength of the PDN was greatly improved by 104%. Under a short time of NIR laser irradiation, the PGO effectively converts light energy to thermal energy to heat the PDN hydrogels. The damaged carrageenan network was rebuilt, and a 90% compressive strength recovery was achieved. The PGO not only significantly improves the mechanical performance of PDN, but also restores the compressive property of PDN via a photothermal method. These tough hydrogels with superior photothermal recovery may work as promising substitutes for load-bearing tissues.

13.
J Phys Chem Lett ; 10(19): 5756-5763, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31498645

RESUMO

Advancement of the next generation of air-breathing propulsion systems will require developing novel high-energy fuels by adding high energy-density materials such as aluminum to enhance fuel performance. We present original measurements, obtained by exploiting the ultrasonic levitation technique, to elucidate the oxidation of exo-tetrahydrodicyclopentadiene (JP-10; C10H16) droplets doped with 80 nm-diameter aluminum nanoparticles (Al NPs) in an oxygen-argon atmosphere. The oxidation was monitored by Raman, Fourier-transform infrared (FTIR), and ultraviolet-visible (UV-Vis) spectroscopies together with high-speed optical and IR thermal-imaging cameras. The addition of 0.5 wt % of the Al NPs was critical for ignition under our experimental conditions occurring at 540 ± 40 K. Diatomic radicals such as OH, CH, C2, and AlO were observed during the oxidation of the doped JP-10 droplets, thus providing insight into the reactive intermediates. The influence of the Al NPs on the reaction mechanism is discussed.

14.
Materials (Basel) ; 12(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146327

RESUMO

An approach for optimizing fuel particle reactivity involves the metallurgical process of pre-stressing. This study examined the effects of pre-stressing on aluminum (Al) particle ignition delay and burn times upon thermal ignition by laser heating. Pre-stressing was by annealing Al powder at 573 K and quenching ranged from slow (i.e., 200 K/min) identified as pre-stressed (PS) Al to fast (i.e., 900 K/min) identified as super quenched (SQ) Al. Synchrotron X-ray Diffraction (XRD) analysis quantified an order of magnitude which increased dilatational strain that resulted from PS Al and SQ Al compared to untreated (UN) Al powder. The results show PS Al particles exhibit reduced ignition delay times resulting from elevated strain that relaxes upon laser heating. SQ Al particles exhibit faster burn times resulting from delamination at the particle core-shell interface that reduces dilatational strain and promotes accelerated diffusion reactions. These results link the mechanical property of strain to reaction mechanisms associated with shell mechanics that explain ignition and burning behavior, and show pre-stressing has the potential to improve particle reactivity.

15.
RSC Adv ; 9(69): 40607-40617, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-35542678

RESUMO

Energetic films were synthesized using stress altered nano-aluminum particles (nAl). The nAl powder was pre-stressed to examine how modified mechanical properties of the fuel particles influenced film reactivity. Pre-stressing conditions varied by quenching rate. Slow and rapid quenching rates induced elevated dilatational strain within the nAl particles that was measured using synchrotron X-ray diffraction (XRD). An analytical model for stress and strain in a nAl core-Al2O3 shell particle that includes creep in the shell and delamination at the core-shell boundary, was developed and used for interpretation of strain measurements. Results show rapid quenching induced 81% delamination at the particle core-shell interface also observed with Transmission Electron Microscopy (TEM). Slower quenching elevated dilatational strain without delamination. All films were prepared at approximately a 75 : 25 Al : poly(vinylidene fluoride) PVDF weight ratio and were 1 mm thick. A drop weight impact test was performed to assess ignition sensitivity and combustion. Stress altered nAl exhibited greater energy release rates and more complete combustion than untreated nAl, but reaction dynamics and kinetics proceeded in two different ways depending on the nAl quenching rate during pre-stressing.

16.
Sci Rep ; 8(1): 8036, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795273

RESUMO

A new synthesis approach for aluminum particles enables an aluminum core to be passivated by an oxidizing salt: aluminum iodate hexahydrate (AIH). Transmission electron microscopy (TEM) images show that AIH replaces the Al2O3 passivation layer on Al particles that limits Al oxidation. The new core-shell particle reactivity was characterized using laser-induced air shock from energetic materials (LASEM) and results for two different Al-AIH core-shell samples that vary in the AIH concentration demonstrate their potential use for explosive enhancement on both fast (detonation velocity) and slow (blast effects) timescales. Estimates of the detonation velocity for TNT-AIH composites suggest an enhancement of up to 30% may be achievable over pure TNT detonation velocities. Replacement of Al2O3 with AIH allows Al to react on similar timescales as detonation waves. The AIH mixtures tested here have relatively low concentrations of AIH (15 wt. % and 6 wt. %) compared to previously reported samples (57.8 wt. %) and still increase TNT performance by up to 30%. Further optimization of AIH synthesis could result in additional increases in explosive performance.

17.
ACS Appl Mater Interfaces ; 9(28): 24290-24297, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28656765

RESUMO

Density functional theory (DFT) calculations were performed to examine exothermic surface chemistry between alumina and four fluorinated, fragmented molecules representing species from decomposing fluoropolymers: F-, HF, CH3F, and CF4. The analysis has strong implications for the reactivity of aluminum (Al) particles passivated by an alumina shell. It was hypothesized that the alumina surface structure could be transformed due to hydrogen bonding effects from the environment that promote surface reactions with fluorinated species. In this study, the alumina surface was analyzed using model clusters as isolated systems embedded in a polar environment (i.e., acetone). The conductor-like screening model (COSMO) was used to mimic environmental effects on the alumina surface. Four defect models for specific active -OH sites were investigated including two terminal hydroxyl groups and two hydroxyl bridge groups. Reactions involving terminal bonds produce more energy than bridge bonds. Also, surface exothermic reactions between terminal -OH bonds and fluorinated species produce energy in decreasing order with the following reactant species: CF4 > HF > CH3F. Additionally, experiments were performed on aluminum powders using thermal equilibrium analysis techniques that complement the calculations. Consistently, the experimental results show a linear relationship between surface exothermic reactions and the main fluorination reaction for Al powders. These results connect molecular level reaction kinetics to macroscopic measurements of surface energy and show that optimizing energy available in surface reactions linearly correlates to maximizing energy in the main reaction.

18.
Appl Opt ; 56(9): 2535-2541, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28375364

RESUMO

Combusting metals burn at high temperatures and emit high-intensity radiation in the visible spectrum, which can oversaturate regular imaging sensors and obscure the field of view. Filtering the luminescence can result in limited information and hinder thorough combustion characterization. A method for "seeing through the flames" of a highly luminescent aluminum powder reaction is presented using copper vapor laser (CVL) illumination, synchronized with a high-speed camera. A statistical comparison of combusting aluminum particle agglomerates imaged using various filtration techniques shows the effectiveness of the high-speed camera with a CVL diagnostic approach. When ignited by an electrically induced plasma, aluminum particles are entrained as solid agglomerates that rotate about their centers of mass and are surrounded by emitted, burning gases. The average agglomerate diameter appears to be 160 µm when viewed with standard illumination and a high-speed camera. However, a significantly reduced diameter of 50 µm is recorded when imaged with CVL illumination coupled with a high-speed camera and a 511 nm notch filter. These results indicate alternative imaging techniques are required to resolve the complexities of metal particle combustion.

19.
Phys Rev E ; 95(1-1): 012118, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28208494

RESUMO

The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This work utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and compared to previously published correlations. A set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.

20.
J Vis Exp ; (117)2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27842354

RESUMO

Tetraiodine nonoxide (I4O9) has been synthesized using a dry approach that combines elemental oxygen and iodine without the introduction of hydrated species. The synthesis approach inhibits the topochemical effect promoting rapid hydration when exposed to the relative humidity of ambient air. This stable, amorphous, nano-particle material was analyzed using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) and showed an exothermic energy release at low temperature (i.e., 180 °C) for the transformation of I4O9 into I2O5. This additional exothermic energy release contributes to an increase in overall reactivity of I4O9 when dry mixed with nano-aluminum (Al) powder, resulting in a minimum of 150% increase in flame speed compared to Al + I2O5. This study shows that as an oxidizer, I4O9 has more reactive potential than other forms of iodine(V) oxide when combined with Al, especially if I4O9 can be passivated to inhibit absorption of water from its surrounding environment.


Assuntos
Alumínio , Varredura Diferencial de Calorimetria , Cinética , Nanopartículas , Óxidos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...