Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Microbiol ; 22(2): e13140, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31736226

RESUMO

Hypoxic adaptation pathways, essential for Candida albicans pathogenesis, are tied to its transition from a commensal to a pathogen. Herein, we identify a WW domain-containing protein, Ifu5, as a determinant of hypoxic adaptation that also impacts normoxic responses in this fungus. Ifu5 activity supports glycosylation homeostasis via the Cek1 mitogen-activated protein kinase-dependent up-regulation of PMT1, under normoxia. Transcriptome analysis of ifu5Δ/Δ under normoxia shows a significant up-regulation of the hypoxic regulator EFG1 and EFG1-dependent genes. We demonstrate physical interaction between Ifu5 by virtue of its WW domain and Efg1 that represses EFG1 expression under normoxia. This interaction is lost under hypoxic growth conditions, relieving EFG1 repression. Hypoxic adaptation processes such as filamentation and biofilm formation are affected in ifu5Δ/Δ cells revealing the role of Ifu5 in hypoxic signalling and modulating pathogenicity traits of C. albicans under varied oxygen conditions. Additionally, the WW domain of Ifu5 facilitates its role in hypoxic adaptation, revealing the importance of this domain in providing a platform to integrate various cellular processes. These data forge a relationship between Efg1 and Ifu5 that fosters the role of Ifu5 in hypoxic adaptation thus illuminating novel strategies to undermine the growth of C. albicans.


Assuntos
Candida albicans/patogenicidade , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas , Virulência , Domínios WW
2.
Cell Microbiol ; 19(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28745020

RESUMO

Fungal pathogens such as Candida albicans exhibit several survival mechanisms to evade attack by antifungals and colonise host tissues. Rta3, a member of the Rta1-like family of lipid-translocating exporters has a 7-transmembrane domain topology, similar to the G-protein-coupled receptors and is unique to the fungal kingdom. Our findings point towards a role for the plasma membrane localised Rta3 in providing tolerance to miltefosine, an analogue of alkylphosphocholine, by maintaining mitochondrial energetics. Concurrent with miltefosine susceptibility, the rta3Δ/Δ strain displays increased inward translocation (flip) of fluorophore-labelled phosphatidylcholine (PC) across the plasma membrane attributed to enhanced PC-specific flippase activity. We also assign a novel role to Rta3 in the Bcr1-regulated pathway for in vivo biofilm development. Transcriptome analysis reveals that Rta3 regulates expression of Bcr1 target genes involved in cell surface properties, adhesion, and hyphal growth. We show that rta3Δ/Δ mutant is biofilm-defective in a rat venous catheter model of infection and that BCR1 overexpression rescues this defect, indicating that Bcr1 functions downstream of Rta3 to mediate biofilm formation in C. albicans. The identification of this novel Rta3-dependent regulatory network that governs biofilm formation and PC asymmetry across the plasma membrane will provide important insights into C. albicans pathogenesis.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Animais , Antifúngicos/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/metabolismo , Catéteres/microbiologia , Membrana Celular/efeitos dos fármacos , Proteínas Fúngicas/genética , Deleção de Genes , Proteínas de Membrana/genética , Fosforilcolina/análogos & derivados , Fosforilcolina/metabolismo , Ratos
3.
FEMS Yeast Res ; 15(8)2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26518191

RESUMO

In this study, we demonstrate a novel function of a downstream effector molecule of the calcineurin pathway, RTA2 (Resistance To Aminocholesterol), in ER stress response. The deletion of RTA2 increases susceptibility to the ER stressor tunicamycin and morpholine-like drug, 7-aminocholesterol. Additionally, the expression of RTA2 is also transcriptionally induced by ergosterol biosynthesis inhibitors and cell-wall-damaging agents. As tunicamycin induces the unfolded protein response pathway (UPR) via the transcription factor, HAC1, we monitored the expression of a subset of HAC1-dependent UPR target genes in rta2Δ/Δ cells. Upon tunicamycin exposure, rta2Δ/Δ cells displayed a significantly reduced expression of UPR genes, in spite of only a moderate decrease in the HAC1 spliced mRNA levels and no change in Hac1 protein levels. Furthermore, hac1Δ/Δrta2Δ/Δ cells display an exacerbated sensitivity to tunicamycin compared to the single mutants. We propose that functional RTA2 is requisite for the regulation of Hac1p-dependent UPR target genes to maximal levels, thereby assisting survival during ER stress. Collectively, this study proposes, for the first time, existence of an interplay between the Hac1p- and calcineurin- controlled networks via a downstream effector molecule of the latter, RTA2, to facilitate survival during ER stress in Candida albicans.


Assuntos
Anti-Infecciosos/toxicidade , Candida albicans/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Tunicamicina/toxicidade , Resposta a Proteínas não Dobradas , Candida albicans/genética , Proteínas Fúngicas/genética , Deleção de Genes
4.
Eukaryot Cell ; 2(6): 1350-60, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14665468

RESUMO

Candida albicans, the single most frequently isolated human fungal pathogen, was thought to be asexual until the recent discovery of the mating-type-like locus (MTL). Homozygous MTL strains were constructed and shown to mate. Furthermore, it has been demonstrated that opaque-phase cells are more efficient in mating than white-phase cells. The similarity of the genes involved in the mating pathway in Saccharomyces cerevisiae and C. albicans includes at least one gene (KEX2) that is involved in the processing of the alpha mating pheromone in the two yeasts. Taking into account this similarity, we searched the C. albicans genome for sequences that would encode the alpha pheromone gene. Here we report the isolation and characterization of the gene MFalpha1, which codes for the precursor of the alpha mating pheromone in C. albicans. Two active alpha-peptides, 13 and 14 amino acids long, would be generated after the precursor molecule is processed in C. albicans. To examine the role of this gene in mating, we constructed an mfalpha1 null mutant of C. albicans. The mfalpha1 null mutant fails to mate as MTLalpha, while MTLa mfalpha1 cells are still mating competent. Experiments performed with the synthetic alpha-peptides show that they are capable of inducing growth arrest, as demonstrated by halo tests, and also induce shmooing in MTLa cells of C. albicans. These peptides are also able to complement the mating defect of an MTLalpha kex2 mutant strain when added exogenously, thereby confirming their roles as alpha mating pheromones.


Assuntos
Candida albicans/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Peptídeos/farmacologia , Feromônios/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Divisão Celular , Meios de Cultura , Deleção de Genes , Genoma de Protozoário , Homozigoto , Dados de Sequência Molecular , Fases de Leitura Aberta , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Feromônios/metabolismo , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...