Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(22): 29016-29028, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38783839

RESUMO

Graphene has received much scientific attention as an electrode material for lithium-ion batteries because of its extraordinary physical and electrical properties. However, the lack of structural control and restacking issues have hindered its application as carbon-based anode materials for next generation lithium-ion batteries. To improve its performance, several modification approaches such as edge-functionalization and electron-donating/withdrawing substitution have been considered as promising strategies. In addition, group 7A elements have been recognized as critical elements due to their electronegativity and electron-withdrawing character, which are able to further improve the electronic and structural properties of materials. Herein, we elucidated the chemistry of nanographenes with edge-substituted group 7A elements as lithium-ion battery anodes. The halogenated nanographenes were synthesized via bottom-up organic synthesis to ensure the structural control. Our study reveals that the presence of halogens on the edge of nanographenes not only tunes the structural and electronic properties but also impacts the material stability, reactivity, and Li+ storage capability. Further systematic spectroscopic studies indicate that the charge polarization caused by halogen atoms could regulate the Li+ transport, charge transfer energy, and charge storage behavior in nanographenes. Overall, this study provides a new molecular design for nanographene anodes aiming for next-generation lithium-ion batteries.

2.
Nanomaterials (Basel) ; 14(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38470775

RESUMO

Calcium titanium oxide has emerged as a highly promising material for optoelectronic devices, with recent studies suggesting its potential for favorable thermoelectric properties. However, current experimental observations indicate a low thermoelectric performance, with a significant gap between these observations and theoretical predictions. Therefore, this study employs a combined approach of experiments and simulations to thoroughly investigate the impact of structural and directional differences on the thermoelectric properties of two-dimensional (2D) and three-dimensional (3D) metal halide perovskites. Two-dimensional (2D) and three-dimensional (3D) metal halide perovskites constitute the focus of examination in this study, where an in-depth exploration of their thermoelectric properties is conducted via a comprehensive methodology incorporating simulations and experimental analyses. The non-equilibrium molecular dynamics simulation (NEMD) was utilized to calculate the thermal conductivity of the perovskite material. Thermal conductivities along both in-plane and out-plane directions of 2D perovskite were computed. The NEMD simulation results show that the thermal conductivity of the 3D perovskite is approximately 0.443 W/mK, while the thermal conductivities of the parallel and vertical oriented 2D perovskites increase with n and range from 0.158 W/mK to 0.215 W/mK and 0.289 W/mK to 0.309 W/mK, respectively. Hence, the thermal conductivity of the 2D perovskites is noticeably lower than the 3D ones. Furthermore, the parallel oriented 2D perovskites exhibit more effective blocking of heat transfer behavior than the perpendicular oriented ones. The experimental results reveal that the Seebeck coefficient of the 2D perovskites reaches 3.79 × 102 µV/K. However, the electrical conductivity of the 2D perovskites is only 4.55 × 10-5 S/cm, which is one order of magnitude lower than that of the 3D perovskites. Consequently, the calculated thermoelectric figure of merit for the 2D perovskites is approximately 1.41 × 10-7, slightly lower than that of the 3D perovskites.

3.
Small ; : e2308676, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072780

RESUMO

Highly emissive semiconductor nanocrystals, or so-called quantum dots (QDs) possess a variety of applications from displays and biology labeling, to quantum communication and modern security. Though ensembles of QDs have already shown very high photoluminescent quantum yields (PLQYs) and have been widely utilized in current optoelectronic products, QDs that exhibit high absorption cross-section, high emission intensity, and, most important, nonblinking behavior at single-dot level have long been desired and not yet realized at room temperature. In this work, infrared-emissive MAPbI3 -based halide perovskite QDs is demonstrated. These QDs not only show a ≈100% PLQY at the ensemble level but also, surprisingly, at the single-dot level, display an extra-large absorption cross-section up to 1.80 × 10-12 cm2 and non-blinking single photon emission with a high single photon purity of 95.3%, a unique property that is extremely rare among all types of quantum emitters operated at room temperature. An in-depth analysis indicates that neither trion formation nor band-edge carrier trapping is observed in MAPbI3 QDs, resulting in the suppression of intensity blinking and lifetime blinking. Fluence-dependent transient absorption measurements reveal that the coexistence of non-blinking behavior and high single photon purity in these perovskite QDs results from a significant repulsive exciton-exciton interaction, which suppresses the formation of biexciton, and thus greatly reduces photocharging. The robustness of these QDs is confirmed by their excellent stability under continuous 1 h electron irradiation in high-resolution transmission electron microscope inspection. It is believed that these results mark an important milestone in realizing nonblinking single photon emission in semiconductor QDs.

4.
J Chem Theory Comput ; 19(14): 4533-4545, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37140982

RESUMO

Graphite is one of the most widely used negative electrode materials for lithium ion batteries (LIBs). However, because of the rapid growth of demands pursuing higher energy density and charging rates, comprehensive insights into the lithium intercalation and plating processes are critical for further boosting the potential of graphite electrodes. Herein, by utilizing the dihedral-angle-corrected registry-dependent potential (DRIP) (Wen et al., Phys. Rev. B 2018, 98, 235404), the Ziegler-Biersack-Littmark (ZBL) potential (Ziegler and Biersack, Astrophysics, Chemistry, and Condensed Matter; 1985, pp 93-129), and the machine learning-based spectral neighbor analysis (SNAP) potential (Thompson et al., J. Comput, Phys. 2015, 285, 316-330), we have successfully trained a hybrid machine learning-enabled potential energy model capable of simulating a wide spectrum of lithium intercalation scenario from plating to overlithiation. Our extensive atomistic simulations reveal the trapping of intercalated lithium atoms close to the graphite edges due to high hopping barriers, resulting in lithium plating. Furthermore, we report a stable dense graphite intercalation compound (GIC) LiC4 with a theoretical capacity of 558 mAh/g, wherein lithium atoms occupy alternating upper/lower graphene hollow sites with a nearest Li-Li distance of 2.8 Å. Surprisingly, following the same lithium insertion manner would allow the nearest Li-Li distance to be retained until the capacity reaches 845.2 mAh/g, corresponding to a GIC of LiC2.6. Hence, the present study demonstrates that the hybrid machine learning approach could further extend the scope of machine learning energy models, allowing us to investigate the lithium intercalation into graphite over a wide range of intercalation capacity to unveil the underlying mechanisms of lithium plating, diffusion, and discovery of new dense GICs for advanced LIBs with high charging rates and high energy densities.

5.
Nano Lett ; 23(4): 1306-1312, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36745443

RESUMO

A moiré superlattice formed in twisted van der Waals bilayers has emerged as a new tuning knob for creating new electronic states in two-dimensional materials. Excitonic properties can also be altered drastically due to the presence of moiré potential. However, quantifying the moiré potential for excitons is nontrivial. By creating a large ensemble of MoSe2/MoS2 heterobilayers with a systematic variation of twist angles, we map out the minibands of interlayer and intralayer excitons as a function of twist angles, from which we determine the moiré potential for excitons. Surprisingly, the moiré potential depth for intralayer excitons is up to ∼130 meV, comparable to that for interlayer excitons. This result is markedly different from theoretical calculations based on density functional theory, which show an order of magnitude smaller moiré potential for intralayer excitons. The remarkably deep intralayer moiré potential is understood within the framework of structural reconstruction within the moiré unit cell.

6.
Small ; 18(27): e2201349, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661406

RESUMO

The notorious growth of lithium (Li) dendrites and the instability of the solid electrolyte interface (SEI) during cycling make Li metal anodes unsuitable for use in commercial Li-ion batteries. Herein, the use of simple sugar coating (α-d-glucose) is demonstrated on top of Li metal to halt the growth of Li dendrites and stabilize the SEI. The α-d-glucose layer possesses high surface and adhesive energies toward Li, which promote the homogenous stripping and plating of Li ions on top of the Li metal. Density functional theory reveals that Li-ion diffusion within the α-d-glucose layer is governed by hopping around the bare sides of the O atoms and along the apparent passages formed by the glucose molecules. Stable cycling performance is achieved when combining α-d-glucose-coated Li (G|Li) anodes with sulfur- and LiFePO4 -based cathodes in both LiTFSI (ether) and LiPF6 (carbonate) electrolyte systems. A G|Li-based symmetrical cell operates at a current density of 1 mA cm-2 and areal capacity of 1 mAh cm-2 displays a stable overpotential profile for over 9 months (7000 h) of continuous charge/discharge cycling.


Assuntos
Adesivos , Lítio , Dendritos , Eletrodos , Glucose
7.
Small ; 18(23): e2107834, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35532078

RESUMO

As the power conversion efficiency (PCE) of organic photovoltaics (OPVs) approaches 19%, increasing research attention is being paid to enhancing the device's long-term stability. In this study, a robust interface engineering of graphene oxide nanosheets (GNS) is expounded on improving the thermal and photostability of non-fullerene bulk-heterojunction (NFA BHJ) OPVs to a practical level. Three distinct GNSs (GNS, N-doped GNS (N-GNS), and N,S-doped GNS (NS-GNS)) synthesized through a pyrolysis method are applied as the ZnO modifier in inverted OPVs. The results reveal that the GNS modification introduces passivation and dipole effects to enable better energy-level alignment and to facilitate charge transfer across the ZnO/BHJ interface. Besides, it optimizes the BHJ morphology of the photoactive layer, and the N,S doping of GNS further enhances the interaction with the photoactive components to enable a more idea BHJ morphology. Consequently, the NS-GNS device delivers enhanced performance from 14.5% (control device) to 16.5%. Moreover, the thermally/chemically stable GNS is shown to stabilize the morphology of the ZnO electron transport layer (ETL) and to endow the BHJ morphology of the photoactive layer grown atop with a more stable thermodynamic property. This largely reduces the microstructure changes and the associated charge recombination in the BHJ layer under constant thermal/light stresses. Finally, the NS-GNS device is demonstrated to exhibit an impressive T80 lifetime (time at which PCE of the device decays to 80% of the initial PCE) of 2712 h under a constant thermal condition at 65 °C in a glovebox and an outstanding photostability with a T80 lifetime of 2000 h under constant AM1.5G 1-sun illumination in an N2 -controlled environment.

8.
J Phys Chem Lett ; 12(14): 3591-3599, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33822632

RESUMO

Revealing the process-structure-property (PSP) relationships of chemically complex mixed-ion perovskite requires comprehensive insights into correlations between microstructures and chemical compositions. However, experimentally determining the microstructural information about complex perovskites over the composition space is a challenging task. In this study, a machine learning enabled energy model was trained for MAyFA1-yPb(BrxI1-x)3 mixed-ion perovskite for fast and extensive sampling over the compositional/permutational spaces to map the ion-mixing energies, chemical ordering, and atomic strains. Correlation analysis indicated the strong lattice distortion in the high-MA/Br concentration regime is the primary reason for poor device performance-strong lattice distortion induces high mixing energy, resulting in phase segregation and defect formation. Hence, mitigating lattice distortion to retain the single-phase solid solution is one necessary condition of the optimal composition of mixed-ion perovskites. The present study therefore provides insights into the microstructures as well as the guidelines for determining the optimal composition of mixed-ion perovskite materials.

9.
ACS Appl Mater Interfaces ; 13(4): 5017-5027, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33467849

RESUMO

Lithium (Li) metal is regarded as one of the most promising anode materials for use in next-generation high-energy-density rechargeable batteries because of its high volumetric and gravimetric specific capacity, as well as low reduction potential. Unfortunately, uncontrolled dendritic Li growth during cyclic charging/discharging leads to low columbic efficiency and critical safety issues. Hence, comprehensive understanding of the formation mechanism for Li-dendrite growth, particularly at the onset of dendrite formation, is essential for developing Li-metal anode batteries. In this study, reactive molecular dynamics (MD) simulations in combination with the electrochemical dynamics with implicit degrees of freedom (EChemDID) method were performed to investigate the formation and evolution of solid electrolyte interphase (SEI) films for a Li-metal anode under cyclic charging/discharging processes in two distinct dimensions, namely, electrolyte compositions and initial surface morphologies. Our simulations indicated that regardless of the electrolyte compositions and initial anode morphologies, inhomogeneous Li reduction, namely, the formation of Li-reduction "hotspots" during cyclic charging cycles, took place and could serve as the seed for subsequent dendrite growth. The fluorine-containing electrolyte additives could notably mitigate the Li-anode roughening processes by forming dense-SEI-layer products or suppressing electrolyte decomposition. A series of Li-ion-drifting simulations suggest that Li ions navigate through the SEI layer via pathways composed of low-density atoms and become reduced at these reduction hotspots, promoting inhomogeneous deposition and subsequent dendrite growth. The present study reveals atomistic details of the early stage of dendrite growth during cyclic loadings under different electrolyte compositions and anode morphologies, thereby providing insights for designing artificial SEI layers or electrolytes for long-life, high-capacity Li-ion batteries.

10.
Chemistry ; 26(61): 13948-13956, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32666566

RESUMO

A series of linear carboxylic acids containing diacetylenic units at different positions along the chain (C12 H25 (C≡C)2 (CH2 )n COOH, n=7-11) were vacuum-deposited on clean silica substrates. The morphologies of the initial films after UV irradiation were studied. A clear odd-even effect on the morphology of the initial film was observed in that, depending on the spacer length between the diacetylenic unit and carboxyl head group, rings or dendrites of acid dimer layers were obtained. A molecular dynamic simulation of the aggregation process suggests that two competing intermolecular interactions and thus aggregation directions are involved and modulated by the odd or even carbon chain length. Further modulation of the interaction by substitution of a phenyl group at the terminus of the chain or by changing the carboxyl head group to an amidobenzoic acid head group led to a similar odd-even effect but with different dimensions or trends, which can be rationalized similarly. These results give the opportunity to create aligned conjugated polymer chains of different dimensions through self-assembly for applications in molecular/organic electronics.

11.
ACS Appl Mater Interfaces ; 12(29): 32649-32657, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32568520

RESUMO

Fully inorganic perovskites based on Bi3+ and Sb3+ are emerging as alternatives that overcome the toxicity and low stability of their Pb-based perovskite counterparts. Nevertheless, the thin film fabrication of Pb-free perovskites remains a struggle, with poor morphologies and incomplete conversions greatly inhibiting device performance. In this study, we modulated the crystallization of an all-inorganic dimer phase of a Sb perovskite (d-Cs3Sb2I9) through gradual increase in the annealing temperature, accompanied by the use of Lewis bases for adduct formation. Here, the role of Lewis pairing in the crystallization of the resulting Pb-free Cs3Sb2I9 thin films has been investigated. Both, "S-donor" (thiourea) and "O-donor" [N-methylpyrrolidone (NMP)] Lewis bases are examined for their abilities to form adducts with Cs+ and Sb3+ cations. Furthermore, density functional theory has been used to estimate the binding energies of these Lewis bases with the Cs3Sb2I9 lattice. Temperature-dependent photoluminescence spectroscopy revealed the nature of the band gap of d-Cs3Sb2I9. The efficiency of the resulting perovskite solar cells was enhanced to 1.8%, with excellent stability observed, when using NMP to form the adduct film. To the best of our knowledge, this is the best solar cell efficiency for the dimer phase of the inorganic Sb-based perovskite. The effects of both S- and O-donors are studied under various environmental stresses to reveal the stability responses of the devices.

12.
ACS Omega ; 4(6): 10950-10959, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460193

RESUMO

Hybrid organic-inorganic perovskite materials are promising materials for photovoltaic and optoelectronic applications. Nevertheless, the construction of a computationally efficient potential model for atomistic simulations of perovskite with high fidelity to ab initio calculations is not a trivial task given the chemically complex nature of perovskite in terms of its chemical components and interatomic interactions. In the present study, we demonstrate that artificial neural network (ANN) models can be employed for efficient and accurate potential energy evaluation of MAPbI3 perovskite materials. The ANN models were trained using training sets composed of thousands of atomic images of tetragonal MAPbI3 crystals, with their respective energies and atomic forces obtained from ab initio calculations. The trained ANN models were validated by predicting the lattice parameters and energies/atomic forces of cubic MAPbI3 perovskite and had excellent agreement with ab initio calculations. The phonon modes could also be extracted using the trained ANN model with good agreement with ab initio calculations, provided that the atomic forces were incorporated into the training processes. Finally, we demonstrate that for a given system size, the trained ANN model offers 104 to 105 faster time consumption per energy evaluation relative to ab initio calculations using Vienna Ab initio Simulation Package, demonstrating the potential of the ANN model for exhaustively sampling the configuration spaces of chemically complex materials for predictions of thermodynamic properties and phase stabilities.

13.
ACS Appl Mater Interfaces ; 11(14): 13507-13513, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30859803

RESUMO

ZnO is a direct band gap material that has numerous optoelectronic applications. Recently, the thermoelectric behavior of ZnO has drawn much attention because it is expected to enrich the multifunctional application of ZnO. However, the high thermal conductivity nature of ZnO (∼50 W/(m·K)) is a challenge to further increase its thermoelectrtic figure of merit ( ZT). In this paper, a way to increase the ZT of ZnO thin films by insertion of silicon-rich oxide (SRO) interlayers is reported. All of the constituents are earth-abundant and environmental friendly. The effects of the number of SRO layers, thickness, grain size, heat treatment, and crystallinity of ZnO of the superlattices on the thermoelectric behaviors of ZnO were investigated. The thermoelectric ZT was determined by the transient Harman method by measuring the Seebeck voltage. The thermal conductivity of the ZnO/SRO superlattices that is crucial to elucidate the ZT behaviors is calculated using molecular dynamic simulation, in which the Zn-O and Zn-Zn interactions were described by the Born-Mayer potential and the short-range non-Coulombic O-O interaction was described by the Morse potential. For a given total ZnO/SRO thickness, the grain size of the ZnO decreases monotonically with the increasing number of SRO layers, thus leading to a decrease of the thermal conductivity and an increase of the ZT of the superlattices. As the best result, the annealed 45 nm thick ZnO thin film with three SRO interlayers presents a high ZT of ∼0.16 at room temperature. A comprehensive study on the ZnO/SRO superlattice-based thermoelectrtic devices was carried out by the experiment and theoretical simulation. The results imply potential thermoelectric application of the ZnO/SRO superlattices.

14.
Nanoscale ; 11(6): 2892-2900, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30688332

RESUMO

Dissolution of lithium polysulfide (LiPS) into the electrolyte during discharging, causing shuttling of LiPS from the cathode to the lithium (Li) metal, is mainly responsible for the capacity decay and short battery life of lithium-sulfur batteries (LSBs). Herein, we designed a separator comprising polypropylene (PP) coated with MoO3 nanobelts (MNBs), prepared through facile grinding of commercial MoO3 powder. The formation of Li2Sn-MoO3 during discharging inhibited the polysulfide shuttling; during charging, Li passivated LixMoO3 facilitated ionic transfer during the redox reaction by decreasing the charge transfer resistance. This dual-interaction mechanism of LiPS-with both Mo and the formation of LixMoO3-resulted in a substantially high initial discharge capacity at a very high current density of 5C, with 29.4% of the capacity retained after 5000 cycles. The simple fabrication approach and extraordinary cycle life observed when using this MNB-coated separator suggest a scalable solution for future commercialization of LSBs.

15.
ACS Appl Mater Interfaces ; 11(2): 2060-2070, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30582792

RESUMO

Despite issues related to dendrite formation, research on Li metal anodes has resurged because of their high energy density. In this study, graphene oxide (GO) layers are decorated onto Li metal anodes through a simple process of drop-casting and spray-coating. The self-assembly of GO is exploited to synthesize coatings having compact, mesoporous, and macroporous morphologies. The abilities of the GO coatings to suppress dendrite formation are compared through Li|Li symmetrical cell charging at a current density of 5 mA cm-2 for 2000 cycles-a particularly abusive test. The macroporous structure possesses the lowest impedance, whereas the compact structure excels in terms of stability. Moreover, GO exhibits a low nucleation overpotential and is transformed into reduced GO with enhanced conductivity during the operation of the cells; both factors synergistically mitigate the issue of dendrite formation. Li-S batteries incorporating the GO-decorated Li anodes exhibit an initial capacity of 850 mA h g-1 and maintain their stability for 800 cycles at a C-rate of 1 C (1675 mA h g-1), suggesting the applicability of GO in future rechargeable batteries.

16.
ACS Appl Mater Interfaces ; 10(17): 15058-15064, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29652480

RESUMO

Single-crystal antimonene flakes are observed on sapphire substrates after the postgrowth annealing procedure of amorphous antimony (Sb) droplets prepared by using molecular beam epitaxy at room temperature. The large wetting angles of the antimonene flakes to the sapphire substrate suggest that an alternate substrate should be adopted to obtain a continuous antimonene film. By using a bilayer MoS2/sapphire sample as the new substrate, a continuous and single-crystal antimonene film is obtained at a low growth temperature of 200 °C. The results are consistent with the theoretical prediction of the lower interface energy between antimonene and MoS2. The different interface energies of antimonene between sapphire and MoS2 surfaces lead to the selective growth of antimonene only atop MoS2 surfaces on a prepatterned MoS2/sapphire substrate. With similar sheet resistance to graphene, it is possible to use antimonene as the contact metal of 2D material devices. Compared with Au/Ti electrodes, a specific contact resistance reduction up to 3 orders of magnitude is observed by using the multilayer antimonene as the contact metal to MoS2. The lower contact resistance, the lower growth temperature, and the preferential growth to other 2D materials have made antimonene a promising candidate as the contact metal for 2D material devices.

17.
Nano Lett ; 17(1): 249-254, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28073267

RESUMO

Focused ion beams (FIBs) are versatile tools with cross-disciplinary applications from the physical and life sciences to archeology. Nevertheless, the nanoscale patterning precision of FIBs is often accompanied by defect formation and sample deformation. In this study, the fundamental mechanisms governing the large-scale plastic deformation of nanostructures undergoing FIB processes are revealed by a series of molecular dynamic simulations. A surprisingly simple linear correlation between atomic volume removed from the film bulk and film deflection angle, regardless of incident ion energy and current, is revealed, demonstrating that the mass transport to the surface of material caused by energetic ion bombardment is the primary cause leading to nanostructure deformation. Hence, by controlling mass transport by manipulation of the incident ion energy and flux, it is possible to control the plastic deformation of nanostructures, thereby fabricating nanostructures with complex three-dimensional geometries.

18.
ACS Appl Mater Interfaces ; 8(32): 20691-700, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27435212

RESUMO

Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies.

19.
J Phys Chem B ; 119(10): 3999-4008, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679518

RESUMO

Green plant photosystem II (PSII) and light-harvesting complex II (LHCII) in the stacked grana regions of thylakoid membranes can self-organize into various PSII-LHCII supercomplexes with crystalline or fluid-like supramolecular structures to adjust themselves with external stimuli such as high/low light and temperatures, rendering tunable solar light absorption spectrum and photosynthesis efficiencies. However, the mechanisms controlling the PSII-LHCII supercomplex organizations remain elusive. In this work, we constructed a coarse-grained (CG) model of the thylakoid membrane including lipid molecules and a PSII-LHCII supercomplex considering association/dissociation of moderately bound-LHCIIs. The CG interaction between CG beads were constructed based on electron microscope (EM) experimental results, and we were able to simulate the PSII-LHCII supramolecular organization of a 500 × 500 nm(2) thylakoid membrane, which is compatible with experiments. Our CGMD simulations can successfully reproduce order structures of PSII-LHCII supercomplexes under various protein packing fractions, free-LHCII:PSII ratios, and temperatures, thereby providing insights into mechanisms leading to PSII-LHCII supercomplex organizations in photosynthetic membranes.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Complexos de Proteínas Captadores de Luz/metabolismo , Microscopia Eletrônica , Simulação de Dinâmica Molecular , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Estrutura Quaternária de Proteína , Temperatura , Tilacoides/metabolismo
20.
ACS Appl Mater Interfaces ; 6(23): 20612-24, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25373018

RESUMO

The nanomorphologies of the bulk heterojunction (BHJ) layer of polymer solar cells are extremely sensitive to the electrode materials and thermal annealing conditions. In this work, the correlations of electrode materials, thermal annealing sequences, and resultant BHJ nanomorphological details of P3HT:PCBM BHJ polymer solar cell are studied by a series of large-scale, coarse-grained (CG) molecular simulations of system comprised of PEDOT:PSS/P3HT:PCBM/Al layers. Simulations are performed for various configurations of electrode materials as well as processing temperature. The complex CG molecular data are characterized using a novel extension of our graph-based framework to quantify morphology and establish a link between morphology and processing conditions. Our analysis indicates that vertical phase segregation of P3HT:PCBM blend strongly depends on the electrode material and thermal annealing schedule. A thin P3HT-rich film is formed on the top, regardless of bottom electrode material, when the BHJ layer is exposed to the free surface during thermal annealing. In addition, preferential segregation of P3HT chains and PCBM molecules toward PEDOT:PSS and Al electrodes, respectively, is observed. Detailed morphology analysis indicated that, surprisingly, vertical phase segregation does not affect the connectivity of donor/acceptor domains with respective electrodes. However, the formation of P3HT/PCBM depletion zones next to the P3HT/PCBM-rich zones can be a potential bottleneck for electron/hole transport due to increase in transport pathway length. Analysis in terms of fraction of intra- and interchain charge transports revealed that processing schedule affects the average vertical orientation of polymer chains, which may be crucial for enhanced charge transport, nongeminate recombination, and charge collection. The present study establishes a more detailed link between processing and morphology by combining multiscale molecular simulation framework with an extensive morphology feature analysis, providing a quantitative means for process optimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...