Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biointerphases ; 15(4): 041004, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32689805

RESUMO

Co-Cr alloys such as L605 are widely applied for the manufacture of medical devices, including tiny cardiovascular stents. The presence of potentially toxic and allergenic release of Ni, Co, and Cr ions from these devices remains an unsolved concern. Surface modification by oxygen plasma immersion implantation (PIII) could be an excellent technique to create a dense and thin passive oxide layer on a relatively complex shape of a tiny device, such as a stent, thus reducing the potential release of metallic ions. The effect of oxygen PIII was investigated on L605 alloy specimens, from 5 to 50 mTorr gas pressures, and under pulsed bias voltages from -0.1 to -10 kV. The surface chemistry was investigated by x-ray photoelectron spectroscopy, while its morphology and surface energy were evaluated, respectively, by atomic force microscopy and scanning electron microscopy and by a sessile drop static contact angle. Electrochemical characterization was performed by potentiodynamic tests in the saline solution. Mechanical properties of the modified surface layer, specifically film adhesion and hardness (H), were assessed by scratch and nanoindentation tests. Results shown that the oxidized layers were composed of a mixture of Co and Cr oxides and hydroxides and were rich in Co. The corrosion rate was considerably reduced after O PIII, even for treatments using low bias voltage (-0.1 kV) and with consequent low oxygen implantation depth. Moreover, O PIII also improved surface hardness. The oxidized layers were found to have good adhesion and to be scratch resistant.


Assuntos
Ligas de Cromo/química , Gases em Plasma/química , Corrosão , Técnicas Eletroquímicas , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Oxirredução , Oxigênio/química , Estresse Mecânico , Propriedades de Superfície
2.
Materials (Basel) ; 12(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075986

RESUMO

Friction stir welds are considered reliable joints for their lack of voids, cracks and distortions. When compared to the base material, friction stir welding (FSW) joints typically exhibit finer grain structured (especially at the nugget zone, NZ). Similarly, refined grain structure can also be obtained by severe plastic deformation (SPD) techniques, such as equal channel angular pressing (ECAP). In fact, the fine grain structures produced within the NZ of FSW or friction stir processed (FSP) materials are usually coarser than the ones achieved by ECAP. The former is characterized by lower dislocation density, higher high-angle boundary fraction and different mechanical strength, compared to what can be obtained by ECAP. In this study, a dedicated cold-rolling (CR) set-up, specifically designed to simulate an ECAP-equivalent shear deformation, was used to further refine the grain structure of FSW AA5754 sheets. The effect of ECAP-equivalent deformation induced by CR in a 2 mm-thick AA5754-H111 FSW joint was investigated. FSW was carried out at two different rotational (ω) and translational (v) welding speeds, 600 rpm, 200 mm/min and 1800 rpm, 75 mm/min, respectively. FSW sheets were then CR to obtain an equivalent shear strain of ε ~ 1.08, that is equivalent to 1-ECAP pass carried out with an internal die channels intersecting at an angle φ = 90° with a curvature extending over an angle Ψ = 20°. By CR, the sheet thickness reduced only by ~20%. The role of annealing on the FSW and CR plastically deformed AA5754 was also investigated. This was applied either prior or after FSW, and it resulted that whenever it follows the FSW, the mean volume fraction of dispersoids and Mg-rich particles is higher than the case of annealing preceding the FSW process. On the contrary, it was found that the annealing treatment had a minimal role on the dispersoids and particles mean size. The here reported post-FSW ECAP-simulated deformation, obtained by a customized CR process, showed sheet integrity and a significant concurrent grain size refinement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...