Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 5121, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698624

RESUMO

Our research introduces the natural flavonoid naringenin as a novel inhibitor of an emerging class of intracellular channels, Two-Pore Channel 2 (TPC2), as shown by electrophysiological evidence in a heterologous system, i.e. Arabidopsis vacuoles lacking endogenous TPCs. In view of the control exerted by TPC2 on intracellular calcium signaling, we demonstrated that naringenin dampens intracellular calcium responses of human endothelial cells stimulated with VEGF, histamine or NAADP-AM, but not with ATP or Angiopoietin-1 (negative controls). The ability of naringenin to impair TPC2-dependent biological activities was further explored in an established in vivo model, in which VEGF-containing matrigel plugs implanted in mice failed to be vascularized in the presence of naringenin. Overall, the present data suggest that naringenin inhibition of TPC2 activity and the observed inhibition of angiogenic response to VEGF are linked by impaired intracellular calcium signaling. TPC2 inhibition is emerging as a key therapeutic step in a range of important pathological conditions including the progression and metastatic potential of melanoma, Parkinson's disease, and Ebola virus infection. The identification of naringenin as an inhibitor of TPC2-mediated signaling provides a novel and potentially relevant tool for the advancement of this field of research.


Assuntos
Canais de Cálcio/metabolismo , Flavanonas/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , NADP/análogos & derivados , NADP/farmacologia
2.
Biomed Res Int ; 2015: 965271, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26146638

RESUMO

Angiopoietins are vascular factors essential for blood vessel assembly and correct organization and maturation. This study describes a novel calcium-dependent machinery activated through Angiopoietin-1/2-Tie receptor system in HUVECs monolayer. Both cytokines were found to elicit intracellular calcium mobilization. Targeting intracellular Ca(2+) signaling, antagonizing IP3 with 2-APB or cADPR with 8Br-cADPR, was found to modulate in vitro angiogenic responses to Angiopoietins in a specific way. 2-APB and 8Br-cADPR impaired the phosphorylation of AKT and FAK induced by Ang-1 and Ang-2. On the other hand, phosphorylation of ERK1/2 and p38, as well as cell proliferation, was not affected by either inhibitor. The ability of ECs to migrate following Angs stimulation, evaluated by "scratch assay," was reduced by either 2-APB or 8Br-cADPR following Ang-2 stimulation and only slightly affected by 2-APB in cells stimulated with Ang-1. These results identify a novel calcium-dependent machinery involved in the complex interplay regulating angiogenic processes showing that IP3- and cADPR-induced Ca(2+) release specifically regulates distinct Angs-mediated angiogenic steps.


Assuntos
Angiotensina II/metabolismo , Sinalização do Cálcio/genética , ADP-Ribose Cíclica/genética , Neovascularização Fisiológica/genética , Angiopoietinas/genética , Angiopoietinas/metabolismo , Angiotensina II/genética , Cálcio/metabolismo , Proliferação de Células/genética , ADP-Ribose Cíclica/biossíntese , Células Endoteliais da Veia Umbilical Humana , Humanos , Receptor TIE-2/genética , Receptor TIE-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...