Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanophotonics ; 13(14): 2565-2573, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836100

RESUMO

Modifying the energy landscape of existing molecular emitters is an attractive challenge with favourable outcomes in chemistry and organic optoelectronic research. It has recently been explored through strong light-matter coupling studies where the organic emitters were placed in an optical cavity. Nonetheless, a debate revolves around whether the observed change in the material properties represents novel coupled system dynamics or the unmasking of pre-existing material properties induced by light-matter interactions. Here, for the first time, we examined the effect of strong coupling in polariton organic light-emitting diodes via time-resolved electroluminescence studies. We accompanied our experimental analysis with theoretical fits using a model of coupled rate equations accounting for all major mechanisms that can result in delayed electroluminescence in organic emitters. We found that in our devices the delayed electroluminescence was dominated by emission from trapped charges and this mechanism remained unmodified in the presence of strong coupling.

2.
J Phys Chem C Nanomater Interfaces ; 127(29): 14255-14262, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37529668

RESUMO

Improving the performance of organic optoelectronics has been under vigorous research for decades. Recently, polaritonics has been introduced as a technology that has the potential to improve the optical, electrical, and chemical properties of materials and devices. However, polaritons have been mainly studied in optical microcavities that are made by vacuum deposition processes, which are costly, unavailable to many, and incompatible with printed optoelectronics methods. Efforts toward the fabrication of polariton microcavities with solution-processed techniques have been utterly absent. Herein, we demonstrate for the first time strong light-matter coupling and polariton photoluminescence in an organic microcavity consisting of an aluminum mirror and a distributed Bragg reflector (DBR) made by sequential dip coating of titanium hydroxide/poly(vinyl alcohol) (TiOH/PVA) and Nafion films. To fabricate and develop the solution-processed DBRs and microcavities, we automatized a dip-coating device that allowed us to produce sub-100 nm films consistently over many dip-coating cycles. Owning to the solution-based nature of our DBRs, our results pave the way to the realization of polariton optoelectronic devices beyond physical deposition methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...