Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 109(14): 144101, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23083244

RESUMO

The method of surrogates is one of the key concepts of nonlinear data analysis. Here, we demonstrate that commonly used algorithms for generating surrogates often fail to generate truly linear time series. Rather, they create surrogate realizations with Fourier phase correlations leading to nondetections of nonlinearities. We argue that reliable surrogates can only be generated, if one tests separately for static and dynamic nonlinearities.

2.
Histol Histopathol ; 23(9): 1077-91, 2008 09.
Artigo em Inglês | MEDLINE | ID: mdl-18581279

RESUMO

The ontogeny of the digestive tract was studied histologically and histochemically in sharpsnout sea bream Diplodus puntazzo from hatching (0 DAH, Days After Hatching) until day 57 (57 DAH). At hatching, the digestive tract appeared as a histologically undifferentiated straight tube lying dorsally to the yolk sac. When the mouth opened at 3 DAH, the digestive tract was differentiated into buccopharynx, oesophagus, incipient stomach and intestine. The pancreas, liver and gall bladder were also differentiated at this stage and both the bile and pancreatic duct had opened into the anterior intestine. Active feeding began in 50% of larvae at 4 DAH, although permanence of yolk reserves until 7 DAH suggests a period of both endogenous and exogenous feeding. Nutrient absorption was first visible from 5 DAH, as colourless supra- and infranuclear vacuoles in the anterior intestinal mucosa, suggesting a lipid content, as well as supranuclear, eosinophilic vacuoles, containing protein, in the posterior intestinal mucosa. Early caecal development could be detected from 10 DAH, whereas gastric glands appeared at 30 DAH, indicating the transition from larval to juvenile stage and the acquisition of an adult mode of digestion. Goblet cells appeared in the digestive tract of sharpsnout sea bream larvae shortly after first feeding. The mucus content of goblet cells varied with the digestive region and, in the buccal cavity and oesophagus, also with the developmental phase. This study provides knowledge for better husbandry practices in the aquaculture industry, as well as for the implementation of future nutritional studies.


Assuntos
Embrião não Mamífero , Trato Gastrointestinal/embriologia , Dourada/embriologia , Animais , Biomarcadores/metabolismo , Trato Gastrointestinal/metabolismo , Histocitoquímica/métodos , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Dourada/crescimento & desenvolvimento , Dourada/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...