Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(24): 14523-14534, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32596590

RESUMO

The structure of a recombinant (His-tagged at C-terminus) alcohol dehydrogenase (MoADH) from the cold-adapted bacterium Moraxella sp. TAE123 has been refined with X-ray diffraction data extending to 1.9 Å resolution. The enzyme assumes a homo-tetrameric structure. Each subunit comprises two distinct structural domains: the catalytic domain (residues 1-150 and 288-340/345) and the nucleotide-binding domain (residues 151-287). There are two Zn2+ ions in each protein subunit. Two additional zinc ions have been found in the crystal structure between symmetry-related subunits. The structure has been compared with those of homologous enzymes from Geobacillus stearothermophilus (GsADH), Escherichia coli (EcADH), and Thermus sp. ATN1 (ThADH) that thrive in environments of diverse temperatures. Unexpectedly, MoADH has been found active from 10 to at least 53 °C and unfolds at 89 °C according to circular dichroism spectropolarimetry data. MoADH with substrate ethanol exhibits a small value of activation enthalpy ΔH ‡ of 30 kJ mol-1. Molecular dynamics simulations for single subunits of the closely homologous enzymes MoADH and GsADH performed at 280, 310, and 340 K showed enhanced wide-ranging mobility of MoADH at high temperatures and generally lower but more distinct and localized mobility for GsADH. Principal component analysis of the fluctuations of both ADHs resulted in a prominent open-close transition of the structural domains mainly at 280 K for MoADH and 340 K for GsADH. In conclusion, MoADH is a very thermostable, cold-adapted enzyme and the small value of activation enthalpy allows the enzyme to function adequately at low temperatures.

2.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 1): 19-23, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615962

RESUMO

The copper(II) centre of the blue copper protein pseudoazurin from Alcaligenes faecalis has been substituted by zinc(II) via denaturing the protein, chelation and removal of copper and refolding the apoprotein, followed by the addition of an aqueous solution of ZnCl2. Vapour-diffusion experiments produced colourless hexagonal crystals (space group P65), which when cryocooled had unit-cell parameters a=b=49.01, c=98.08 Å. Diffraction data collected at 100 K using a copper sealed tube were phased by the weak anomalous signal of five S atoms and one Zn atom. The structure was fitted manually and refined to 1.6 Šresolution. The zinc-substituted protein exhibits similar overall geometry to the native structure with copper. Zn2+ binds more strongly to its four ligand atoms (His40 Nδ1, Cys78 Sγ, His81 Nδ1 and Met86 Sδ) and retains the tetrahedral arrangement, although the structure is less distorted than the native copper protein.


Assuntos
Alcaligenes faecalis , Azurina/química , Proteínas de Bactérias/química , Zinco/química , Sítios de Ligação , Complexos de Coordenação/química , Cobre/química , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
3.
Biochem Biophys Rep ; 4: 152-157, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124199

RESUMO

The gene coding for the aminoglycoside adenylyltransferase (aadA6) from a clinical isolate of Pseudomonas aeruginosa was cloned and expressed in Escherichia coli strain BL21(DE3)pLysS. The overexpressed enzyme (AadA6, 281 amino-acid residues) and a carboxy-terminal truncated variant molecule ([1-264]AadA6) were purified to near homogeneity and characterized. Light scattering experiments conducted under low ionic strength supported equilibrium between monomeric and homodimeric arrangements of the enzyme subunits. Circular Dichroism spectropolarimetry indicated a close structural relation to adenylate kinases. Both forms modified covalently the aminoglycosides streptomycin and spectinomycin. The enzyme required at least 5 mM MgCl2 for normal Michaelis-Menten kinetics. Streptomycin exhibited a strong substrate inhibition effect at 1 mM MgCl2. The truncated 17 residues at the C-terminus have little influence on protein folding, whereas they have a positive effect on the enzymic activity and stabilize dimers at high protein concentrations (>100 µM). Homology modelling and docking based on known crystal structures yielded models of the central ternary complex of monomeric AadA6 with ATP and streptomycin or spectinomycin.

4.
Biopolymers ; 95(3): 202-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20945335

RESUMO

The Cu(II) center at the active site of the blue copper protein pseudoazurin from Alcaligenes faecalis has been substituted by Co(II) via denaturing of the protein, chelation and removal of copper by EDTA and refolding of the apo-protein, followed by addition of an aqueous solution of CoCl(2). Sitting drop vapour diffusion experiments produced green hexagonal crystals, which belong to space group P6(5), with unit cell dimensions a = b = 50.03, c = 98.80 Å. Diffraction data, collected at 291 K on a copper rotating anode X-ray source, were phased by the anomalous signal of the cobalt atom. The structure was built automatically, fitted manually and subsequently refined to 1.86 Å resolution. The Co-substituted protein exhibits similar overall geometry to the native structure with copper. Cobalt binds more strongly to the axial Met86-Sδ and retains the tetrahedral arrangement with the four ligand atoms, His40-Nδ(1), Cys78-Sγ, His81-Nδ(1), and 86Met-Sδ, although the structure is less distorted than the native copper protein. The structure reported herein, is the first crystallographic structure of a Co(II)-substituted pseudoazurin.


Assuntos
Azurina/química , Alcaligenes faecalis/química , Cobalto/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Eletricidade Estática
5.
J Mol Biol ; 366(5): 1545-57, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17229438

RESUMO

SecA is the preprotein translocase ATPase subunit and a superfamily 2 (SF2) RNA helicase. Here we present the 2 A crystal structures of the Escherichia coli SecA homodimer in the apo form and in complex with ATP, ADP and adenosine 5'-[beta,gamma-imido]triphosphate (AMP-PNP). Each monomer contains the SF2 ATPase core (DEAD motor) built of two domains (nucleotide binding domain, NBD and intramolecular regulator of ATPase 2, IRA2), the preprotein binding domain (PBD), which is inserted in NBD and a carboxy-terminal domain (C-domain) linked to IRA2. The structures of the nucleotide complexes of SecA identify an interfacial nucleotide-binding cleft located between the two DEAD motor domains and residues critical for ATP catalysis. The dimer comprises two virtually identical protomers associating in an antiparallel fashion. Dimerization is mediated solely through extensive contacts of the DEAD motor domains leaving the C-domain facing outwards from the dimerization core. This dimerization mode explains the effect of functionally important mutations and is completely different from the dimerization models proposed for other SecA structures. The repercussion of these findings on translocase assembly and catalysis is discussed.


Assuntos
Adenosina Trifosfatases/química , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Adenilil Imidodifosfato/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
6.
Artigo em Inglês | MEDLINE | ID: mdl-16511007

RESUMO

An NAD(+)-dependent psychrophilic alcohol dehydrogenase (ADH) from the Antarctic psychrophile Moraxella sp. TAE123 has been purified to homogeneity. The enzyme consists of four identical subunits, each containing two Zn ions. Protein crystals suitable for X-ray diffraction were obtained under optimized salting-out crystallization conditions using ammonium sulfate as a precipitating agent. The crystals are hexagonal bipyramids and belong to space group P3(1)21 or P3(2)21, with unit-cell parameters a = 136.4, c = 210.7 A. They contain one protein homotetramer in the asymmetric unit. Diffraction data were collected to 2.2 A under cryogenic conditions using synchrotron radiation.


Assuntos
Álcool Desidrogenase/química , Moraxella/enzimologia , Álcool Desidrogenase/isolamento & purificação , Regiões Antárticas , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Cristalização , Moraxella/isolamento & purificação , Água do Mar/microbiologia , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...