Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5095, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38876987

RESUMO

Two-photon voltage imaging has long been heralded as a transformative approach capable of answering many long-standing questions in modern neuroscience. However, exploiting its full potential requires the development of novel imaging approaches well suited to the photophysical properties of genetically encoded voltage indicators. We demonstrate that parallel excitation approaches developed for scanless two-photon photostimulation enable high-SNR two-photon voltage imaging. We use whole-cell patch-clamp electrophysiology to perform a thorough characterization of scanless two-photon voltage imaging using three parallel illumination approaches and lasers with different repetition rates and wavelengths. We demonstrate voltage recordings of high-frequency spike trains and sub-threshold depolarizations from neurons expressing the soma-targeted genetically encoded voltage indicator JEDI-2P-Kv. Using a low repetition-rate laser, we perform multi-cell recordings from up to fifteen targets simultaneously. We co-express JEDI-2P-Kv and the channelrhodopsin ChroME-ST and capitalize on their overlapping two-photon absorption spectra to simultaneously evoke and image action potentials using a single laser source. We also demonstrate in vivo scanless two-photon imaging of multiple cells simultaneously up to 250 µm deep in the barrel cortex of head-fixed, anaesthetised mice.


Assuntos
Potenciais de Ação , Neurônios , Fótons , Animais , Camundongos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Técnicas de Patch-Clamp , Lasers
2.
Res Sq ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36747617

RESUMO

Parallel light-sculpting methods have been used to perform scanless two-photon photostimulation of multiple neurons simultaneously during all-optical neurophysiology experiments. We demonstrate that scanless two-photon excitation also enables high-resolution, high-contrast, voltage imaging by efficiently exciting fluorescence in a large fraction of the cellular soma. We present a thorough characterisation of scanless two-photon voltage imaging using existing parallel approaches and lasers with different repetition rates. We demonstrate voltage recordings of high frequency spike trains and sub-threshold depolarizations in intact brain tissue from neurons expressing the soma-targeted genetically encoded voltage indicator JEDI-2P-kv. Using a low repetition-rate laser, we perform recordings from up to ten neurons simultaneously. Finally, by co-expressing JEDI-2P-kv and the channelrhodopsin ChroME-ST in neurons of hippocampal organotypic slices, we perform single-beam, simultaneous, two-photon voltage imaging and photostimulation. This enables in-situ validation of the precise number and timing of light evoked action potentials and will pave the way for rapid and scalable identification of functional brain connections in intact neural circuits.

3.
Cell Rep Methods ; 2(8): 100268, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36046629

RESUMO

We developed a multi-unit microscope for all-optical inter-layers circuits interrogation. The system performs two-photon (2P) functional imaging and 2P multiplexed holographic optogenetics at axially distinct planes. We demonstrated the capability of the system to map, in the mouse retina, the functional connectivity between rod bipolar cells (RBCs) and ganglion cells (GCs) by activating single or defined groups of RBCs while recording the evoked response in the GC layer with cell-type specificity and single-cell resolution. We then used a logistic model to probe the functional connectivity between cell types by deriving the "cellular receptive field" describing how RBCs impact each GC type. With the capability to simultaneously image and control neuronal activity at axially distinct planes, the system enables a precise interrogation of multi-layered circuits. Understanding this information transfer is a promising avenue to dissect complex neural circuits and understand the neural basis of computations.


Assuntos
Holografia , Camundongos , Animais , Holografia/métodos , Fótons , Células Bipolares da Retina , Optogenética/métodos
4.
Nat Commun ; 12(1): 4527, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312384

RESUMO

Optogenetic manipulation of neuronal activity through excitatory and inhibitory opsins has become an indispensable experimental strategy in neuroscience research. For many applications bidirectional control of neuronal activity allowing both excitation and inhibition of the same neurons in a single experiment is desired. This requires low spectral overlap between the excitatory and inhibitory opsin, matched photocurrent amplitudes and a fixed expression ratio. Moreover, independent activation of two distinct neuronal populations with different optogenetic actuators is still challenging due to blue-light sensitivity of all opsins. Here we report BiPOLES, an optogenetic tool for potent neuronal excitation and inhibition with light of two different wavelengths. BiPOLES enables sensitive, reliable dual-color neuronal spiking and silencing with single- or two-photon excitation, optical tuning of the membrane voltage, and independent optogenetic control of two neuronal populations using a second, blue-light sensitive opsin. The utility of BiPOLES is demonstrated in worms, flies, mice and ferrets.


Assuntos
Membrana Celular/fisiologia , Opsinas/metabolismo , Optogenética/métodos , Células Piramidais/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Células Cultivadas , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Furões/genética , Furões/metabolismo , Células HEK293 , Hipocampo/citologia , Humanos , Masculino , Potenciais da Membrana/fisiologia , Camundongos Transgênicos , Opsinas/genética , Técnicas de Patch-Clamp/métodos , Células Piramidais/citologia , Células Piramidais/metabolismo , Ratos Wistar , Reprodutibilidade dos Testes
5.
Nat Methods ; 17(6): 571-581, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32284609

RESUMO

Temporal focusing, with its ability to focus light in time, enables scanless illumination of large surface areas at the sample with micrometer axial confinement and robust propagation through scattering tissue. In conventional two-photon microscopy, widely used for the investigation of intact tissue in live animals, images are formed by point scanning of a spatially focused pulsed laser beam, resulting in limited temporal resolution of the excitation. Replacing point scanning with temporally focused widefield illumination removes this limitation and represents an important milestone in two-photon microscopy. Temporal focusing uses a diffusive or dispersive optical element placed in a plane conjugate to the objective focal plane to generate position-dependent temporal pulse broadening that enables axially confined multiphoton absorption, without the need for tight spatial focusing. Many techniques have benefitted from temporal focusing, including scanless imaging, super-resolution imaging, photolithography, uncaging of caged neurotransmitters and control of neuronal activity via optogenetics.


Assuntos
Imageamento Tridimensional/métodos , Iluminação/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Fótons , Animais , Desenho de Equipamento , Aumento da Imagem/instrumentação , Imageamento Tridimensional/instrumentação , Iluminação/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação
6.
Sci Rep ; 9(1): 7603, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110187

RESUMO

In the past 10 years, the use of light has become irreplaceable for the optogenetic study and control of neurons and neural circuits. Optical techniques are however limited by scattering and can only see through a depth of few hundreds µm in living tissues. GRIN lens based micro-endoscopes represent a powerful solution to reach deeper regions. In this work we demonstrate that cutting edge optical methods for the precise photostimulation of multiple neurons in three dimensions can be performed through a GRIN lens. By spatio-temporally shaping a laser beam in the two-photon regime we project several tens of spatially confined targets in a volume of at least 100 × 150 × 300 µm3. We then apply such approach to the optogenetic stimulation of multiple neurons simultaneously in vivo in mice. Our work paves the way for an all-optical investigation of neural circuits in previously inaccessible brain areas.


Assuntos
Encéfalo/fisiologia , Cristalino/fisiologia , Neurônios/fisiologia , Animais , Feminino , Lentes , Masculino , Camundongos , Optogenética/métodos , Fótons
7.
J Neurosci ; 39(18): 3484-3497, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30833505

RESUMO

To better examine circuit mechanisms underlying perception and behavior, researchers need tools to enable temporally precise control of action-potential generation of individual cells from neuronal ensembles. Here we demonstrate that such precision can be achieved with two-photon (2P) temporally focused computer-generated holography to control neuronal excitability at the supragranular layers of anesthetized and awake visual cortex in both male and female mice. Using 2P-guided whole-cell or cell-attached recordings in positive neurons expressing any of the three opsins ReaChR, CoChR, or ChrimsonR, we investigated the dependence of spiking activity on the opsin's channel kinetics. We found that in all cases the use of brief illumination (≤10 ms) induces spikes of millisecond temporal resolution and submillisecond precision, which were preserved upon repetitive illuminations up to tens of hertz. To reach high temporal precision, we used a large illumination spot covering the entire cell body and an amplified laser at high peak power and low excitation intensity (on average ≤0.2 mW/µm2), thus minimizing the risk for nonlinear photodamage effects. Finally, by combining 2P holographic excitation with electrophysiological recordings and calcium imaging using GCaMP6s, we investigated the factors, including illumination shape and intensity, opsin distribution in the target cell, and cell morphology, which affect the spatial selectivity of single-cell and multicell holographic activation. Parallel optical control of neuronal activity with cellular resolution and millisecond temporal precision should make it easier to investigate neuronal connections and find further links between connectivity, microcircuit dynamics, and brain functions.SIGNIFICANCE STATEMENT Recent developments in the field of optogenetics has enabled researchers to probe the neuronal microcircuit with light by optically actuating genetically encoded light-sensitive opsins expressed in the target cells. Here, we applied holographic light shaping and temporal focusing to simultaneously deliver axially confined holographic patterns to opsin-positive cells in the living mouse cortex. Parallel illumination efficiently induced action potentials with high temporal resolution and precision for three opsins of different kinetics. We extended the parallel optogenetic activation at low intensity to multiple neurons and concurrently monitored their calcium dynamics. These results demonstrate fast and temporally precise in vivo control of a neuronal subpopulation, opening new opportunities for revealing circuit mechanisms underlying brain functions.


Assuntos
Potenciais de Ação , Neurônios/fisiologia , Optogenética/métodos , Córtex Visual/fisiologia , Animais , Feminino , Luz , Masculino , Camundongos Transgênicos , Optogenética/instrumentação , Fatores de Tempo
8.
Cell Rep ; 24(5): 1243-1253.e5, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30067979

RESUMO

In recent decades, optogenetics has been transforming neuroscience research, enabling neuroscientists to drive and read neural circuits. The recent development in illumination approaches combined with two-photon (2P) excitation, either sequential or parallel, has opened the route for brain circuit manipulation with single-cell resolution and millisecond temporal precision. Yet, the high excitation power required for multi-target photostimulation, especially under 2P illumination, raises questions about the induced local heating inside samples. Here, we present and experimentally validate a theoretical model that makes it possible to simulate 3D light propagation and heat diffusion in optically scattering samples at high spatial and temporal resolution under the illumination configurations most commonly used to perform 2P optogenetics: single- and multi-spot holographic illumination and spiral laser scanning. By investigating the effects of photostimulation repetition rate, spot spacing, and illumination dependence of heat diffusion, we found conditions that make it possible to design a multi-target 2P optogenetics experiment with minimal sample heating.


Assuntos
Encéfalo/efeitos da radiação , Temperatura Alta/efeitos adversos , Optogenética/métodos , Fótons/efeitos adversos , Potenciais de Ação , Animais , Encéfalo/fisiologia , Feminino , Holografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Curr Opin Neurobiol ; 50: 179-189, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29635216

RESUMO

Optogenetics neuronal targeting combined with single-photon wide-field illumination has already proved its enormous potential in neuroscience, enabling the optical control of entire neuronal networks and disentangling their role in the control of specific behaviors. However, establishing how a single or a sub-set of neurons controls a specific behavior, or how functionally identical neurons are connected in a particular task, or yet how behaviors can be modified in real-time by the complex wiring diagram of neuronal connections requires more sophisticated approaches enabling to drive neuronal circuits activity with single-cell precision and millisecond temporal resolution. This has motivated on one side the development of flexible optical methods for two-photon (2P) optogenetic activation using either, or a hybrid of two approaches: scanning and parallel illumination. On the other side, it has stimulated the engineering of new opsins with modified spectral characteristics, channel kinetics and spatial distribution of expression, offering the necessary flexibility of choosing the appropriate opsin for each application. The need for optical manipulation of multiple targets with millisecond temporal resolution has imposed three-dimension (3D) parallel holographic illumination as the technique of choice for optical control of neuronal circuits organized in 3D. Today 3D parallel illumination exists in several complementary variants, each with a different degree of simplicity, light uniformity, temporal precision and axial resolution. In parallel, the possibility to reach hundreds of targets in 3D volumes has prompted the development of low-repetition rate amplified laser sources enabling high peak power, while keeping low average power for stimulating each cell. All together those progresses open the way for a precise optical manipulation of neuronal circuits with unprecedented precision and flexibility.


Assuntos
Encéfalo/citologia , Neurônios/fisiologia , Optogenética/métodos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Optogenética/instrumentação
10.
Nat Neurosci ; 21(6): 896, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29549318

RESUMO

In the supplementary information originally posted online, Supplementary Tables 1-5 and the Supplementary Note were missing. The error has been corrected online.

11.
J Neurophysiol ; 120(1): 23-36, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488837

RESUMO

Improved integration between imaging and electrophysiological data has become increasingly critical for rapid interpretation and intervention as approaches have advanced in recent years. Here, we present PhysImage, a fork of the popular public-domain ImageJ that provides a platform for working with these disparate sources of data, and we illustrate its utility using in vitro preparations from murine embryonic and neonatal tissue. PhysImage expands ImageJ's core features beyond an imaging program by facilitating integration, analyses, and display of 2D waveform data, among other new features. Together, with the Micro-Manager plugin for image acquisition, PhysImage substantially improves on closed-source or blended approaches to analyses and interpretation, and it furthermore aids post hoc automated analysis of physiological data when needed as we demonstrate here. Developing a high-throughput approach to neurophysiological analyses has been a major challenge for neurophysiology as a whole despite data analytics methods advancing rapidly in other areas of neuroscience, biology, and especially genomics. NEW & NOTEWORTHY High-throughput analyses of both concurrent electrophysiological and imaging recordings has been a major challenge in neurophysiology. We submit an open-source solution that may be able to alleviate, or at least reduce, many of these concerns by providing an institutionally proven mechanism (i.e., ImageJ) with the added benefits of open-source Python scripting of PhysImage data that eases the workmanship of 2D trace data, which includes electrophysiological data. Together, with the ability to autogenerate prototypical figures shows this technology is a noteworthy advance.


Assuntos
Eletrofisiologia/métodos , Processamento de Imagem Assistida por Computador/métodos , Neurofisiologia/métodos , Imagem Óptica/métodos , Software , Animais , Humanos , Camundongos
12.
Front Cell Neurosci ; 12: 469, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618626

RESUMO

Optical means for modulating and monitoring neuronal activity, have provided substantial insights to neurophysiology and toward our understanding of how the brain works. Optogenetic actuators, calcium or voltage imaging probes and other molecular tools, combined with advanced microscopies have allowed an "all-optical" readout and modulation of neural circuits. Completion of this remarkable work is evolving toward a three-dimensional (3D) manipulation of neural ensembles at a high spatiotemporal resolution. Recently, original optical methods have been proposed for both activating and monitoring neurons in a 3D space, mainly through optogenetic compounds. Here, we review these methods and anticipate possible combinations among them.

13.
Nat Neurosci ; 20(12): 1796-1806, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29184208

RESUMO

Optogenetic control of individual neurons with high temporal precision within intact mammalian brain circuitry would enable powerful explorations of how neural circuits operate. Two-photon computer-generated holography enables precise sculpting of light and could in principle enable simultaneous illumination of many neurons in a network, with the requisite temporal precision to simulate accurate neural codes. We designed a high-efficacy soma-targeted opsin, finding that fusing the N-terminal 150 residues of kainate receptor subunit 2 (KA2) to the recently discovered high-photocurrent channelrhodopsin CoChR restricted expression of this opsin primarily to the cell body of mammalian cortical neurons. In combination with two-photon holographic stimulation, we found that this somatic CoChR (soCoChR) enabled photostimulation of individual cells in mouse cortical brain slices with single-cell resolution and <1-ms temporal precision. We used soCoChR to perform connectivity mapping on intact cortical circuits.


Assuntos
Neuroimagem/métodos , Neurônios/fisiologia , Optogenética/métodos , Animais , Córtex Cerebral/citologia , Córtex Cerebral/ultraestrutura , Imageamento Tridimensional , Camundongos , Rede Nervosa/citologia , Rede Nervosa/ultraestrutura , Neurônios/ultraestrutura , Opsinas/genética , Optogenética/instrumentação , Técnicas de Patch-Clamp , Estimulação Luminosa , Receptores de Ácido Caínico/genética , Córtex Visual/citologia , Córtex Visual/fisiologia , Receptor de GluK2 Cainato
14.
J Neurosci ; 37(44): 10679-10689, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972125

RESUMO

Optogenetic neuronal network manipulation promises to unravel a long-standing mystery in neuroscience: how does microcircuit activity relate causally to behavioral and pathological states? The challenge to evoke spikes with high spatial and temporal complexity necessitates further joint development of light-delivery approaches and custom opsins. Two-photon (2P) light-targeting strategies demonstrated in-depth generation of action potentials in photosensitive neurons both in vitro and in vivo, but thus far lack the temporal precision necessary to induce precisely timed spiking events. Here, we show that efficient current integration enabled by 2P holographic amplified laser illumination of Chronos, a highly light-sensitive and fast opsin, can evoke spikes with submillisecond precision and repeated firing up to 100 Hz in brain slices from Swiss male mice. These results pave the way for optogenetic manipulation with the spatial and temporal sophistication necessary to mimic natural microcircuit activity.SIGNIFICANCE STATEMENT To reveal causal links between neuronal activity and behavior, it is necessary to develop experimental strategies to induce spatially and temporally sophisticated perturbation of network microcircuits. Two-photon computer generated holography (2P-CGH) recently demonstrated 3D optogenetic control of selected pools of neurons with single-cell accuracy in depth in the brain. Here, we show that exciting the fast opsin Chronos with amplified laser 2P-CGH enables cellular-resolution targeting with unprecedented temporal control, driving spiking up to 100 Hz with submillisecond onset precision using low laser power densities. This system achieves a unique combination of spatial flexibility and temporal precision needed to pattern optogenetically inputs that mimic natural neuronal network activity patterns.


Assuntos
Potenciais de Ação/fisiologia , Holografia/métodos , Neurônios/metabolismo , Opsinas/metabolismo , Optogenética/métodos , Córtex Visual/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Masculino , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Rede Nervosa/química , Rede Nervosa/metabolismo , Neurônios/química , Opsinas/análise , Técnicas de Cultura de Órgãos , Estimulação Luminosa/métodos , Fatores de Tempo , Córtex Visual/química
15.
Front Cell Neurosci ; 10: 234, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27803649

RESUMO

Optogenetics provides a unique approach to remotely manipulate brain activity with light. Reaching the degree of spatiotemporal control necessary to dissect the role of individual cells in neuronal networks, some of which reside deep in the brain, requires joint progress in opsin engineering and light sculpting methods. Here we investigate for the first time two-photon stimulation of the red-shifted opsin ReaChR. We use two-photon (2P) holographic illumination to control the activation of individually chosen neurons expressing ReaChR in acute brain slices. We demonstrated reliable action potential generation in ReaChR-expressing neurons and studied holographic 2P-evoked spiking performances depending on illumination power and pulse width using an amplified laser and a standard femtosecond Ti:Sapphire oscillator laser. These findings provide detailed knowledge of ReaChR's behavior under 2P illumination paving the way for achieving in depth remote control of multiple cells with high spatiotemporal resolution deep within scattering tissue.

17.
Nat Commun ; 7: 11928, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27306044

RESUMO

Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae.


Assuntos
Holografia/métodos , Imageamento Tridimensional/métodos , Microscopia de Contraste de Fase/métodos , Neurônios/ultraestrutura , Dispositivos Ópticos , Animais , Holografia/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Larva/crescimento & desenvolvimento , Larva/ultraestrutura , Luz , Microscopia de Contraste de Fase/instrumentação , Peixe-Zebra/crescimento & desenvolvimento
18.
Neurophotonics ; 2(2): 021007, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26157998

RESUMO

Voltage-sensitive fluorescence indicators enable tracking neuronal electrical signals simultaneously in multiple neurons or neuronal subcompartments difficult to access with patch electrodes. However, efficient widefield epifluorescence detection of rapid voltage fluorescence transients necessitates that imaged cells and structures lie sufficiently far from other labeled structures to avoid contamination from out of focal plane and scattered light. We overcame this limitation by exciting dye fluorescence with one-photon computer-generated holography shapes contoured to axons or dendrites of interest, enabling widefield detection of voltage fluorescence with high spatial specificity. By shaping light onto neighboring axons and dendrites, we observed that dendritic back-propagating action potentials were broader and slowly rising compared with axonal action potentials, differences not measured in the same structures illuminated with a large "pseudowidefield" (pWF) spot of the same excitation density. Shaped illumination trials showed reduced baseline fluorescence, higher baseline noise, and fractional fluorescence transient amplitudes two times greater than trials acquired with pWF illumination of the same regions.

19.
Opt Lett ; 39(20): 5953-6, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25361128

RESUMO

Wavefront shaping with liquid-crystal spatial light modulators (LC-SLMs) is frequently hindered by a remaining fraction of undiffracted light, the so-called "zero-order." This contribution is all the more detrimental in configurations for which the LC-SLM is Fourier conjugated to a sample by a lens, because in these cases this undiffracted light produces a diffraction-limited spot at the image focal plane. In this Letter we propose to minimize two-photon (2P) excitation of the sample, resulting from this unmodulated light, by introducing optical aberrations to the excitation beam. Aberrations are subsequently compensated by the LC-SLM, but only for the modulated part of the beam, and not for the zero-order component. In order to experimentally demonstrate the method, we use astigmatism as the optical aberration, by simply adding one or two cylindrical lenses in the optical path of the beam. A 104 decrease in zero-order-induced 2P fluorescence intensity is demonstrated. Combining this approach with temporal focusing is shown to decrease zero-order fluorescence by a factor of 4·106.


Assuntos
Holografia/métodos , Fótons , Cristais Líquidos , Fenômenos Ópticos
20.
Biol Cell ; 105(10): 443-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23782010

RESUMO

Brain intricacies and the difficulty that scientists encounter in revealing its function with standard approaches such as electrical stimulation of neurons have led to the exploration of new tools that enable the study of neural circuits in a remote and non-invasive way. To this end, optogenetics has initialised a revolution for neuroscience in the last decade by enabling simultaneous monitoring and stimulation of specific neuronal populations in intact brain preparations through genetically targeted expression of light sensitive proteins and molecular photoswitches. In addition to ongoing molecular probe development and optimisation, novel optical techniques hold immense potential to amplify and diversify the utility of optogenetic methods. Importantly, by improving the spatio-temporal resolution of light stimulation, neural circuits can be photoactivated in patterns mimicking endogenous physiological processes. The following synopsis addresses the possibilities and limitations of optical stimulation methods applied to and developed for activation of neuronal optogenetic tools.


Assuntos
Imagem Óptica/métodos , Optogenética/instrumentação , Optogenética/métodos , Animais , Humanos , Neurônios/citologia , Neurônios/metabolismo , Neurônios/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...