Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(20): 4400-4412, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740394

RESUMO

The recent COVID-19 outbreak highlighted the need for lab-on-chip diagnostic technology fit for real-life deployment in the field. Existing bottlenecks in multistep analytical microsystem integration and upscalable, standardized fabrication techniques delayed the large-scale deployment of lab-on-chip solutions during the outbreak, throughout a global diagnostic test shortage. This study presents a technology that has the potential to address these issues by redeploying and repurposing the ubiquitous printed circuit board (PCB) technology and manufacturing infrastructure. We demonstrate the first commercially manufactured, miniaturised lab-on-PCB device for loop-mediated isothermal amplification (LAMP) genetic detection of SARS-CoV-2. The system incorporates a mass-manufactured, continuous-flow PCB chip with ultra-low cost fluorescent detection circuitry, rendering it the only continuous-flow µLAMP platform with off-the-shelf optical detection components. Ultrafast, SARS-CoV-2 RNA amplification in wastewater samples was demonstrated within 2 min analysis, at concentrations as low as 17 gc µL-1. We further demonstrate our device operation by detecting SARS-CoV-2 in 20 human nasopharyngeal swab samples, without the need for any RNA extraction or purification. This renders the presented miniaturised nucleic-acid amplification-based diagnostic test the fastest reported SARS-CoV-2 genetic detection platform, in a practical implementation suitable for deployment in the field. This technology can be readily extended to the detection of alternative pathogens or genetic targets for a very broad range of applications and matrices. LoCKAmp lab-on-PCB chips are currently mass-manufactured in a commercial, ISO-compliant PCB factory, at a small-scale production cost of £2.50 per chip. Thus, with this work, we demonstrate a high technology-readiness-level lab-on-chip-based genetic detection system, successfully benchmarked against standard analytical techniques both for wastewater and nasopharyngeal swab SARS-CoV-2 detection.

2.
Adv Exp Med Biol ; 1420: 97-115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258786

RESUMO

Potency testing is an important part of the evaluation of cellular therapy products. In vitro quantification of identified quality-related biomarkers is a technique often used at the laboratory. Nonetheless, the limited stability of most cellular therapy products, the lot variability and the limited time within which to perform testing are currently hindering their widespread use. Fortunately, within the last two decades, the evolution of material technology and miniaturisation processes has enabled the research community to shift the spotlight of attention towards the Lab-on-Chip concept for diagnostic applications. Such devices enable portable, rapid, sensitive, automated and affordable biochemical analyses aiming to advance the healthcare services across a broad application spectrum. However, it could be argued that the aspirations on their affordability are far from being exceeded, mainly due to the lack of a practical manufacturing technology. The Lab-on-Printed Circuit Board (Lab-on-PCB) approach has demonstrated enormous potential for developing economical diagnostic platforms leveraging the advantage provided by economy of scale manufacturing of the long-standing PCB industry. The integration capabilities that the PCB platform introduces to the Lab-on-Chip concept concerning the electronics and microfluidics seem to be unique. In this chapter, we will be reviewing the progress of Lab-on-PCB prototypes quantifying within miniaturised microchips a range of critical quality attributes with potential in potency testing. We will focus on their technology and applications whilst addressing the potential of this approach in practical use and commercialisation.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Microfluídica/métodos , Miniaturização , Biomarcadores , Indústrias
3.
Sci Rep ; 11(1): 9815, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972649

RESUMO

Lab-on-Chip is a technology that aims to transform the Point-of-Care (PoC) diagnostics field; nonetheless a commercial production compatible technology is yet to be established. Lab-on-Printed Circuit Board (Lab-on-PCB) is currently considered as a promising candidate technology for cost-aware but simultaneously high specification applications, requiring multi-component microsystem implementations, due to its inherent compatibility with electronics and the long-standing industrial manufacturing basis. In this work, we demonstrate the first electrolyte gated field-effect transistor (FET) DNA biosensor implemented on commercially fabricated PCB in a planar layout. Graphene ink was drop-casted to form the transistor channel and PNA probes were immobilized on the graphene channel, enabling label-free DNA detection. It is shown that the sensor can selectively detect the complementary DNA sequence, following a fully inkjet-printing compatible manufacturing process. The results demonstrate the potential for the effortless integration of FET sensors into Lab-on-PCB diagnostic platforms, paving the way for even higher sensitivity quantification than the current Lab-on-PCB state-of-the-art of passive electrode electrochemical sensing. The substitution of such biosensors with our presented FET structures, promises further reduction of the time-to-result in microsystems combining sequential DNA amplification and detection modules to few minutes, since much fewer amplification cycles are required even for low-abundance nucleic acid targets.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA/isolamento & purificação , Grafite/química , Dispositivos Lab-On-A-Chip , Microtecnologia/instrumentação , DNA/química , Eletrônica Médica/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos
4.
Sci Rep ; 10(1): 17152, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051556

RESUMO

Lab-on-Chip technology comprises one of the most promising technologies enabling the widespread adoption of Point-of-Care testing in routine clinical practice. However, until now advances in Lab-on-Chip have not been translated to the anticipated degree to commercialized tools, with integrated device mass manufacturing cost still not at a competitive level for several key clinical applications. Lab-on-PCB is currently considered as a candidate technology addressing this issue, owing to its intuitive compatibility with electronics, seamless integration of electrochemical biosensors and the extensive experience regarding industrial manufacturing processes. Inkjet-printing in particular is a compatible fabrication method, widening the range of electronic materials available and thus enabling seamlessly integrated ultrasensitive electronic detection. To this end, in this work stable pseudo-reference electrodes are fabricated for the first time by means of commercial inkjet-printing on a PCB-integrated electrochemical biosensing platform. SEM and XPS analysis are employed to characterize the electrodes' structure and composition and identify any special characteristics, compared to published work on alternative substrates. Additionally, this paper analyzes integrated reference electrodes from a new perspective, focusing mainly on their characteristics in real-life operation: chemical sintering as opposed to high budget thermal one, stability under continuous flow, pH dependency and bias stress effects on electrode instability, a parameter often overlooked in electrochemical biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...