Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 7(47): 20089-94, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26568116

RESUMO

Variable temperature band-excitation atomic force microscopy in conjunction with I-V spectroscopy was used to investigate the crystalline superionic proton conductor CsHSO4 during proton exchange induced by a Pt-coated conductive scanning probe. At a sample temperature of 150 °C and under an applied bias <1 V, reduction currents of up to 1 nA were observed. Simultaneously, we show that the electrochemical reactions are accompanied by a reversible decrease in the elastic modulus of CsHSO4, as seen by a contact resonance shift, and find evidence for superplasticity during scanning. These effects were not observed in the room-temperature phase of CsHSO4 or in the case of catalytically inactive conductive probes, proving the utility of this technique for monitoring electrochemical processes on the nanoscale, as well as the use of local contact stiffness as a sensitive indicator of electrochemical reactions.

2.
Phys Rev Lett ; 97(8): 087202, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-17026327

RESUMO

Synchrotron Mössbauer spectroscopy (SMS) was performed on an hcp-phase alloy of composition Fe92Ni8 at a pressure of 21 GPa and a temperature of 11 K. Density functional theoretical calculations predict antiferromagnetism in both hcp Fe and hcp Fe-Ni. For hcp Fe, these calculations predict no hyperfine magnetic field, consistent with previous experiments. For hcp Fe-Ni, however, substantial hyperfine magnetic fields are predicted, but these were not observed in the SMS spectra. Two possible explanations are suggested. First, small but significant errors in the generalized gradient approximation density functional may lead to an erroneous prediction of magnetic order or of erroneous hyperfine magnetic fields in antiferromagnetic hcp Fe-Ni. Alternately, quantum fluctuations with periods much shorter than the lifetime of the nuclear excited state would prohibit the detection of moments by SMS.

3.
Phys Rev Lett ; 93(20): 205501, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15600935

RESUMO

The phonon density of states of nanocrystalline bcc Fe and nanocrystalline fcc Ni3Fe were measured by inelastic neutron scattering in two different ranges of energy. As has been reported previously, the nanocrystalline materials showed enhancements in their phonon density of states at energies from 2 to 15 meV, compared to control samples composed of large crystals. The present measurements were extended to energies in the micro-eV range, and showed significant, but smaller, enhancements in the number of modes in the energy range from 5 to 18 microeV. These modes of micro-eV energies provide a long-wavelength limit that bounds the fraction of modes at milli-eV energies originating with the cooperative dynamics of the nanocrystalline microstructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...