Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35806510

RESUMO

The development of an optimal low-calcium alkali-activated binder for high-temperature stability based on ferronickel slag, silica fume, potassium hydroxide, and potassium silicate was investigated based on Mixture Design of Experiment (Mixture DOE). Mass loss, shrinkage/expansion, and compressive and flexural strengths before and after exposure to a high thermal load (900 °C for two hours) were selected as performance markers. Chemical activator minimization was considered in the selection of the optimal mix to reduce CO2 emissions. Unheated 42-day compressive strength was found to be as high as 99.6 MPa whereas the 42-day residual compressive strength after exposure to the high temperature reached 35 MPa (results pertaining to different mixes). Similarly, the maximum unheated 42-day flexural strength achieved was 8.8 MPa, and the maximum residual flexural strength after extreme temperature exposure was 2.5 MPa. The binder showed comparable properties to other alkali-activated ones already studied and a superior thermal performance when compared to Ordinary Portland Cement. A quantitative X-ray diffraction analysis was performed on selected hardened mixes, and fayalite was found to be an important component in the optimal formulation. A life-cycle analysis was performed to study the CO2 savings, which corresponded to 55% for economic allocation.

2.
Open Res Eur ; 2: 79, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37645348

RESUMO

The need for repair and maintenance has become dominant in the European construction sector. This, combined with the urge to decrease CO 2 emissions, has resulted in the development of lower carbon footprint repair solutions such as textile reinforced mortars (TRM) based on alkali-activated materials (AAM). Life cycle studies indicate that AAM CO 2 savings, when compared to Portland cement, range from 80% to 30%. Furthermore, in this study, recycled aggregates were considered with the aim to promote a circular economy mindset. AAM mortars formulation based on fly ash, ladle furnace slag and metakaolin were tested for compressive and flexural strength. Three out of all formulations were chosen for an analysis on the potential of these mortars to be used for TRM applications. Tensile and shear bond tests, combined with a concrete substrate, were executed as indicators of the TRM effectiveness. Scanning electron microscopy and chemical analysis based on energy dispersive X-ray spectroscopy were used to interpret the results and reveal the reasons behind the different level of performance of these composites. Results indicated that TRM based on high calcium fly ash are unsuitable for structural strengthening applications due to low bond between matrix and/or substrate and fibers. Metakaolin-based TRM showed good performance both in terms of tensile strength and bond capacity, which suggests potential as a repair mortar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...