Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38786857

RESUMO

Spodoptera frugiperda (Lepidoptera: Noctuidae), commonly known as fall armyworm, was first detected in Uganda in 2016 and has spread to all the maize-growing districts. Different methods have been deployed to control this pest. However, there is a limited understanding of the role of the environment and farmers' practices on the abundance of and damage by S. frugiperda in Uganda. This study, therefore, assessed the abundance of S. frugiperda and leaf damage levels in three different districts and explored the association between agronomic practices, crop phenology, and weather parameters on S. frugiperda damage and abundance in smallholder farmers' maize fields using a longitudinal monitoring survey in 69 farmers' fields of Kole, Kiryandongo, and Nakaseke for three seasons. The numbers of egg masses and adults were generally low. The highest numbers of adults were trapped in Kiryandongo, followed by Nakaseke, and the lowest numbers were trapped in Kole. Leaf damage and incidence of damaged plants differed significantly between districts and seasons. Leaf damage and abundance of larvae varied significantly in the districts and at different growth stages. Conservation tillage, reduced weeding frequency, increased rainfall and high maximum temperatures were associated with reduced S. frugiperda damage. No significant relationship was observed between pesticide or cropping systems with S. frugiperda leaf damage. However, the influence of fertilizer use on leaf damage was contradictory across seasons and districts. Timely and vigilant scouting, proper timing of control measures, and minimum tillage practices should be included in an IPM strategy for S. frugiperda.

2.
Insects ; 13(9)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36135549

RESUMO

Bean leaf beetles (BLBs) (Ootheca spp.) are serious legume pests in Uganda and sub-Saharan Africa, but their ecology is not well understood. We planted host plants, viz., common bean, cowpea, and soybean, in an experiment in the hotspot areas of Arua and Lira districts in Northern Uganda in order to assess their influence on the density of adults and immature stages of BLBs in different seasons. Overall, the number of adults, larvae, and pupae were higher in cowpea than common bean and soybean plots. The number of adults were highest in cowpea (29.5 adults/15 plants) in Arua during the long rainy season (2018A). The number of adults did not differ significantly during short rains (season B) in 2017 and 2018. Similarly, in Lira district, the highest number of adult BLBs was in cowpea (4.6 beetles) compared to the common bean (2.7 beetles) and soybean plots, with a peak at four weeks after planting (WAP). During 2018A, larvae of BLBs first appeared at five WAP and seven WAP and peaked at 13 WAP and 11 WAP in Arua and Lira, respectively. The pupae were present in the soil after the harvesting of crops during 2018A, but peaked at seven WAP and eight WAP in 2018B season in Arua and Lira, respectively. The occurrence of below-ground adults in 2018B followed the peak abundance of pupae, although this was delayed until six WAP in Arua compared to Lira. We conclude that cowpea is the most preferred by adults and larvae compared to common bean and soybean. Similarly, the first rain season (2018A) attracted higher abundance and damage than the second rain season. Management of the BLBs should thus take into consideration avoidance of host crop rotation and dealing with the below-ground stages.

3.
Insects ; 13(8)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-36005334

RESUMO

Bean leaf beetles (Ootheca spp.) (Coleoptera: Chrysomelidae) are one of Africa's most important pests of the common bean (Phaseolus vulgaris L.). Roots, leaves, floral parts, and young pods are all attacked, leading to a considerable loss in grain yield. In Uganda, there are no comprehensive prescribed management strategies for bean leaf beetles, but farmers typically try to control the pest by delaying bean crop sowing, and to a lesser extent, using insecticides. Although farmers have consistently implemented the two approaches, there is no information on the effects of the approaches in Uganda. To assess the impact of planting timing and insecticide spray regimes on bean leaf beetle populations, concomitant foliar damage, and grain yield, we set up trials in three agro-ecological zones with known presence of the beetles during the second rainy season of 2016 (2016) and the first rainy season of 2017 (2017). The first planting, coinciding with early planting, was conducted within one week after the onset of rains. The second planting, coinciding with mid planting, followed two weeks later, while the third planting, considered late planting in this study, was conducted one month after the second planting. A foliar application of cypermethrin commencing at 7 days after emergence (DAE), 14 DAE, 21 DAE, 28 DAE, and 35 DAE; a soil drench of imidacloprid at planting combined with a foliar spray starting at 7 DAE; and an untreated control were among the insecticide spray regimes evaluated. Higher bean leaf beetle abundance was recorded from mid-planting, while higher foliar damage was recorded from late planting in two of the three agro-ecological zones. However, higher marketable grain yield was recorded from early planting in all agro-ecological zones, suggesting that delayed planting may not be beneficial. Insecticide application reduced foliar damage and increased marketable grain yield, with a combination of soil drench and foliar spray resulting in much less foliar damage and, as a result, higher grain yield. However, this did not result in economic benefits. Furthermore, marketable grain yield was higher when insecticide spray regimes were combined with early planting in all agro-ecological zones during both seasons. Our findings suggest that the common bean should be planted early and that the control of the bean leaf beetle should target both the adults and the juvenile stages in the soil. Therefore, there is a need for farmers to be able to access less-expensive soil treatments.

4.
Insects ; 13(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35735880

RESUMO

Bean leaf beetle (BLB) (Ootheca mutabilis) has emerged as an important bean pest in Uganda, leading to devastating crop losses. There is limited information on the population genetic structure of BLB despite its importance. In this study, novel microsatellite DNA markers and the partial mitochondrial cytochrome oxidase subunit I (mtCOI) gene sequences were used to analyze the spatial population genetic structure, genetic differentiation and haplotype diversity of 86 O. mutabilis samples from 16 (districts) populations. We identified 19,356 simple sequence repeats (SSRs) (mono, di-, tri-, tetra-, penta-, and hexa-nucleotides) of which 81 di, tri and tetra-nucleotides were selected for primer synthesis. Five highly polymorphic SSR markers (4-21 alleles, heterozygosity 0.59-0.84, polymorphic information content (PIC) 50.13-83.14%) were used for this study. Analyses of the 16 O. mutabilis populations with these five novel SSRs found nearly all the genetic variation occurring within populations and there was no evidence of genetic differentiation detected for both types of markers. Also, there was no evidence of isolation by distance between geographical and genetic distances for SSR data and mtCOI data except in one agro-ecological zone for mtCOI data. Bayesian clustering identified a signature of admixture that suggests genetic contributions from two hypothetical ancestral genetic lineages for both types of markers, and the minimum-spanning haplotype network showed low differentiation in minor haplotypes from the most common haplotype with the most common haplotype occurring in all the 16 districts. A lack of genetic differentiation indicates unrestricted migrations between populations. This information will contribute to the design of BLB control strategies.

5.
Insects ; 12(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34821848

RESUMO

Bean leaf beetles (Ootheca spp.) (Insecta: Coleoptera: Chrysomelidae) are one of Africa's most destructive pests of common bean and other leguminous crops. The beetles are widely distributed in Africa where they are estimated to cause annual crop yield losses of 116,400 tons of crop yields in sub-Saharan Africa. Despite their importance, little is known about the distribution, relative abundance and damage caused by bean leaf beetles in Uganda. As a result, the development of effective management methods has been hampered. We conducted surveys in six key Ugandan agro-ecological zones to determine the species distribution and relative abundance of bean leaf beetles. Findings indicate that leaf beetles belonging to 12 genera are present, including members of the genera Afrophthalma Medvedev, 1980, Buphonella Jacoby, 1903, Chrysochrus Chevrolat in Dejean, 1836, Diacantha Dejean, 1845, Exosoma Jacoby, 1903, Lamprocopa Hincks, 1949, Lema Fabricius, 1798, Nisotra Baly, 1864, Neobarombiella Bolz and Wagner, 2012, Ootheca Dejean, 1935, Parasbecesta Laboissière, 1940, and Plagiodera Dejean, 1835. We identified only three species belonging to the genus Ootheca: O. mutabilis, O. proteus, and O. orientalis. Seventy percent of all the beetles collected were O. mutabilis and these were present in all agro-ecological zones studied. The Northern Moist Farmlands (21.9%), West Nile Farmlands (12.9%), Central Wooded Savanna (4.4%) and Southern and Eastern Lake Kyoga Basin (1.4%) were the only agro-ecological zones where O. proteus was found. Only one specimen of O. orientalis was found at a single site in the Central Wooded Savanna. The Northern Moist Farmlands had a significantly (p < 0.05) higher bean leaf beetle density than the West Nile Farmlands and Southwestern Highlands. Similarly, the Northern Moist Farmlands had the highest beetle foliar damage per plant (1.15 ± 0.05), while the Southwestern Highlands had the lowest (0.03 ± 0.02). We provide the first information on Ootheca species distribution, abundance and damage in Uganda. Our findings provide a foundation for assessing the importance of Ootheca spp. as common bean pests in Uganda.

6.
Plant Dis ; 104(8): 2130-2137, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32515687

RESUMO

Over the last 5 years, Southern blight caused by Sclerotium rolfsii Sacc. has superseded root rots caused by pathogens such as Fusarium and Pythium spp. as a major constraint of common bean (Phaseolus vulgaris L.) production in Uganda. Although S. rolfsii is prevalent in all bean-growing regions of Uganda, there is a lack of information about its diversity and pathogenicity to guide the development of effective management strategies. In total, 348 S. rolfsii isolates were obtained from bean fields in seven agroecological zones of Uganda, with the following objectives: to characterize their morphology, based on mycelial growth rate, mycelium texture, and number of sclerotia; and to determine the pathogenicity of 75 selected isolates on five common bean varieties in artificially inoculated soils in a screenhouse. We found that mycelial growth rate and the number of sclerotia produced on artificial media varied among agroecological zones but not within a zone. The five bean varieties tested were found to be susceptible to S. rolfsii, including varieties MLB49-89A and RWR719 that are resistant to Fusarium and Pythium root rots, respectively. Preemergence damping-off ranged between 0 and 100%, and disease severity index ranged between 4.4 and 100%. The widespread and high levels of S. rolfsii virulence on varieties of common bean indicate that management intervention is urgently required to help reduce losses incurred by Ugandan smallholder farmers.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Basidiomycota , Phaseolus , Pythium , Doenças das Plantas , Uganda
7.
Microb Ecol ; 55(3): 561-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18058162

RESUMO

Two major biotic constraints to highland cooking banana (Musa spp., genome group AAA-EA) production in Uganda are the banana weevil Cosmopolites sordidus and the burrowing nematode Radopholus similis. Endophytic Fusarium oxysporum strains inoculated into tissue culture banana plantlets have shown control of the banana weevil and the nematode. We conducted screenhouse and field experiments to investigate persistence in the roots and rhizome of two endophytic Fusarium oxysporum strains, V2w2 and III4w1, inoculated into tissue-culture banana plantlets of highland cooking banana cultivars Kibuzi and Nabusa. Re-isolation of F. oxysporum showed that endophyte colonization decreased faster from the rhizomes than from the roots of inoculated plants, both in the screenhouse and in the field. Whereas rhizome colonization by F. oxysporum decreased in the screenhouse (4-16 weeks after inoculation), root colonization did not. However, in the field (17-33 weeks after inoculation), a decrease was observed in both rhizome and root colonization. The results show a better persistence in the roots than rhizomes of endophytic F. oxysporum strains V2w2 and III4w1.


Assuntos
Fusarium/crescimento & desenvolvimento , Meristema/microbiologia , Musa/microbiologia , Simbiose , Técnicas de Cultura de Tecidos/métodos , Animais , Fusarium/genética , Fusarium/isolamento & purificação , Fusarium/fisiologia , Teste de Complementação Genética , Musa/fisiologia , Controle Biológico de Vetores , Rizoma/microbiologia , Tylenchoidea , Uganda , Gorgulhos
8.
J Invertebr Pathol ; 96(1): 34-42, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17391694

RESUMO

Beauveria bassiana is considered a virulent pathogen against the banana weevil Cosmopolites sordidus. However, current field application techniques for effective control against this pest remain a limitation and an alternative method for effective field application needs to be investigated. Three screenhouse experiments were conducted to determine the ability of B. bassiana to form an endophytic relationship with tissue culture banana (Musa spp.) plants and to evaluate the plants for possible harmful effects resulting from this relationship. Three Ugandan strains of B. bassiana (G41, S204 and WA) were applied by dipping the roots and rhizome in a conidial suspension, by injecting a conidial suspension into the plant rhizome and by growing the plants in sterile soil mixed with B. bassiana-colonized rice substrate. Four weeks after inoculation, plant growth parameters were determined and plant tissue colonization assessed through re-isolation of B. bassiana. All B. bassiana strains were able to colonize banana plant roots, rhizomes and pseudostem bases. Dipping plants in a conidial suspension achieved the highest colonization with no negative effect on plant growth or survival. Beauveria bassiana strain G41 was the best colonizer (up to 68%, 79% and 41% in roots, rhizome and pseudostem base, respectively) when plants were dipped. This study demonstrated that, depending on strain and inoculation method, B. bassiana can form an endophytic relationship with tissue culture banana plants, causing no harmful effects and might provide an alternative method for biological control of C. sordidus.


Assuntos
Beauveria/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Musa/microbiologia , Controle Biológico de Vetores/métodos , Animais , Técnicas In Vitro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...