Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(2): 102183, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38706633

RESUMO

ß-Thalassemia is brought about by defective ß-globin (HBB [hemoglobin subunit ß]) formation and, in severe cases, requires regular blood transfusion and iron chelation for survival. Genome editing of hematopoietic stem cells allows correction of underlying mutations as curative therapy. As potentially safer alternatives to double-strand-break-based editors, base editors (BEs) catalyze base transitions for precision editing of DNA target sites, prompting us to reclone and evaluate two recently published adenine BEs (ABEs; SpRY and SpG) with relaxed protospacer adjacent motif requirements for their ability to correct the common HBBIVSI-110(G>A) splice mutation. Nucleofection of ABE components as RNA into patient-derived CD34+ cells achieved up to 90% editing of upstream sequence elements critical for aberrant splicing, allowing full characterization of the on-target base-editing profile of each ABE and the detection of differences in on-target insertions and deletions. In addition, this study identifies opposing effects on splice correction for two neighboring context bases, establishes the frequency distribution of multiple BE editing events in the editing window, and shows high-efficiency functional correction of HBBIVSI-110(G>A) for our ABEs, including at the levels of RNA, protein, and erythroid differentiation.

2.
Cells ; 12(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132168

RESUMO

Therapy via the gene addition of the anti-sickling ßAS3-globin transgene is potentially curative for all ß-hemoglobinopathies and therefore of particular clinical and commercial interest. This study investigates GLOBE-based lentiviral vectors (LVs) for ßAS3-globin addition and evaluates strategies for an increased ß-like globin expression without vector dose escalation. First, we report the development of a GLOBE-derived LV, GLV2-ßAS3, which, compared to its parental vector, adds anti-sickling action and a transcription-enhancing 848-bp transcription terminator element, retains high vector titers and allows for superior ß-like globin expression in primary patient-derived hematopoietic stem and progenitor cells (HSPCs). Second, prompted by our previous correction of HBBIVSI-110(G>A) thalassemia based on RNApol(III)-driven shRNAs in mono- and combination therapy, we analyzed a series of novel LVs for the RNApol(II)-driven constitutive or late-erythroid expression of HBBIVSI-110(G>A)-specific miRNA30-embedded shRNAs (shRNAmiR). This included bifunctional LVs, allowing for concurrent ßAS3-globin expression. LVs were initially compared for their ability to achieve high ß-like globin expression in HBBIVSI-110(G>A)-transgenic cells, before the evaluation of shortlisted candidate LVs in HBBIVSI-110(G>A)-homozygous HSPCs. The latter revealed that ß-globin promoter-driven designs for monotherapy with HBBIVSI-110(G>A)-specific shRNAmiRs only marginally increased ß-globin levels compared to untransduced cells, whereas bifunctional LVs combining miR30-shRNA with ßAS3-globin expression showed disease correction similar to that achieved by the parental GLV2-ßAS3 vector. Our results establish the feasibility of high titers for LVs containing the full HBB transcription terminator, emphasize the importance of the HBB terminator for the high-level expression of HBB-like transgenes, qualify the therapeutic utility of late-erythroid HBBIVSI-110(G>A)-specific miR30-shRNA expression and highlight the exceptional potential of GLV2-ßAS3 for the treatment of severe ß-hemoglobinopathies.


Assuntos
Hemoglobinopatias , Talassemia beta , Humanos , Talassemia beta/genética , Talassemia beta/terapia , Interferência de RNA , Terapia Genética/métodos , Vetores Genéticos/genética , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Mutação , Globinas beta/genética , RNA Interferente Pequeno/genética
3.
Front Genome Ed ; 5: 1141618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969374

RESUMO

Introduction: Genome editing tools, such as CRISPR/Cas, TALE nucleases and, more recently, double-strand-break-independent editors, have been successfully used for gene therapy and reverse genetics. Among various challenges in the field, tolerable and efficient delivery of editors to target cells and sites, as well as independence from commercially available tools for flexibility and fast adoption of new editing technology are the most pressing. For many hematopoietic research applications, primary CD34+ cells and the human umbilical cord-derived progenitor erythroid 2 (HUDEP-2) cell line are highly informative substrates and readily accessible for in vitro manipulation. Moreover, ex vivo editing of CD34+ cells has immediate therapeutic relevance. Both cell types are sensitive to standard transfection procedures and reagents, such as lipofection with plasmid DNA, calling for more suitable methodology in order to achieve high efficiency and tolerability of editing with editors of choice. These challenges can be addressed by RNA delivery, either as a mixture of guide RNA and mRNA for CRISRP/Cas-based systems or as a mixture of mRNAs for TALENs. Compared to ribonucleoproteins or proteins, RNA as vector creates flexibility by removing dependence on commercial availability or laborious in-house preparations of novel editor proteins. Compared to DNA, RNA is less toxic and by obviating nuclear transcription and export of mRNA offers faster kinetics and higher editing efficiencies. Methods: Here, we detail an in vitro transcription protocol based on plasmid DNA templates with the addition of Anti-Reverse Cap Analog (ARCA) using T7 RNA polymerase, and poly (A) tailing using poly (A) polymerase, combined with nucleofection of HUDEP-2 and patient-derived CD34+ cells. Our protocol for RNA-based delivery employs widely available reagents and equipment and can easily be adopted for universal in vitro delivery of genome editing tools. Results and Discussion: Drawing on a common use case, we employ the protocol to target a ß-globin mutation and to reactivate γ-globin expression as two potential therapies for ß-hemoglobinopathies, followed by erythroid differentiation and functional analyses. Our protocol allows high editing efficiencies and unimpaired cell viability and differentiation, with scalability, suitability for functional assessment of editing outcomes and high flexibility in the application to different editors.

4.
Pharmaceutics ; 14(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35456627

RESUMO

Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.

5.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163006

RESUMO

Molecular therapies and functional studies greatly benefit from spatial and temporal precision of genetic intervention. We therefore conceived and explored tag-activated microRNA (miRNA)-mediated endogene deactivation (TAMED) as a research tool and potential lineage-specific therapy. For proof of principle, we aimed to deactivate γ-globin repressor BCL11A in erythroid cells by tagging the 3' untranslated region (UTR) of BCL11A with miRNA recognition sites (MRSs) for the abundant erythromiR miR-451a. To this end, we employed nucleofection of CRISPR/Cas9 ribonucleoprotein (RNP) particles alongside double- or single-stranded oligodeoxynucleotides for, respectively, non-homologous-end-joining (NHEJ)- or homology-directed-repair (HDR)-mediated MRS insertion. NHEJ-based tagging was imprecise and inefficient (≤6%) and uniformly produced knock-in- and indel-containing MRS tags, whereas HDR-based tagging was more efficient (≤18%), but toxic for longer donors encoding concatenated and thus potentially more efficient MRS tags. Isolation of clones for robust HEK293T cells tagged with a homozygous quadruple MRS resulted in 25% spontaneous reduction in BCL11A and up to 36% reduction after transfection with an miR-451a mimic. Isolation of clones for human umbilical cord blood-derived erythroid progenitor-2 (HUDEP-2) cells tagged with single or double MRS allowed detection of albeit weak γ-globin induction. Our study demonstrates suitability of TAMED for physiologically relevant modulation of gene expression and its unsuitability for therapeutic application in its current form.


Assuntos
Células Eritroides/citologia , Edição de Genes/métodos , MicroRNAs/genética , Proteínas Repressoras/genética , Regiões 3' não Traduzidas , Sistemas CRISPR-Cas , Linhagem Celular , Reparo do DNA por Junção de Extremidades , Células Eritroides/metabolismo , Células HEK293 , Humanos , Estudo de Prova de Conceito
6.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807258

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs crucial for post-transcriptional and translational regulation of cellular and developmental pathways. The study of miRNAs in erythropoiesis elucidates underlying regulatory mechanisms and facilitates related diagnostic and therapy development. Here, we used DNA Nanoball (DNB) small RNA sequencing to comprehensively characterize miRNAs in human erythroid cell cultures. Based on primary human peripheral-blood-derived CD34+ (hCD34+) cells and two influential erythroid cell lines with adult and fetal hemoglobin expression patterns, HUDEP-2 and HUDEP-1, respectively, our study links differential miRNA expression to erythroid differentiation, cell type, and hemoglobin expression profile. Sequencing results validated by reverse-transcription quantitative PCR (RT-qPCR) of selected miRNAs indicate shared differentiation signatures in primary and immortalized cells, characterized by reduced overall miRNA expression and reciprocal expression increases for individual lineage-specific miRNAs in late-stage erythropoiesis. Despite the high similarity of same-stage hCD34+ and HUDEP-2 cells, differential expression of several miRNAs highlighted informative discrepancies between both cell types. Moreover, a comparison between HUDEP-2 and HUDEP-1 cells displayed changes in miRNAs, transcription factors (TFs), target genes, and pathways associated with globin switching. In resulting TF-miRNA co-regulatory networks, major therapeutically relevant regulators of globin expression were targeted by many co-expressed miRNAs, outlining intricate combinatorial miRNA regulation of globin expression in erythroid cells.


Assuntos
Células Eritroides/classificação , Células Eritroides/metabolismo , MicroRNAs/genética , Adulto , Fatores Etários , Diferenciação Celular/genética , Linhagem Celular , Eritropoese/genética , Sangue Fetal/citologia , Hemoglobina Fetal/genética , Feto/metabolismo , Humanos , RNA Mensageiro/genética , Fatores de Transcrição , gama-Globinas/genética
7.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933098

RESUMO

The ß-thalassemias are an increasing challenge to health systems worldwide, caused by absent or reduced ß-globin (HBB) production. Of particular frequency in many Western countries is HBBIVSI-110(G > A) ß-thalassemia (HGVS name: HBB:c.93-21G > A). Its underlying mutation creates an abnormal splice acceptor site in the HBB gene, and while partially retaining normal splicing of HBB, it severely reduces HBB protein expression from the mutant locus and HBB loci in trans. For the assessment of the underlying mechanisms and of therapies targeting ß-thalassemia, accurate quantification of aberrant and normal HBB mRNA is essential, but to date, has only been performed by approximate methods. To address this shortcoming, we have developed an accurate, duplex reverse-transcription quantitative PCR assay for the assessment of the ratio and absolute quantities of normal and aberrant mRNA species as a tool for basic and translational research of HBBIVSI-110(G > A) ß-thalassemia. The method was employed here to determine mRNA ratios and quantities in blood and primary cell culture samples and correlate them with HBB protein levels. Moreover, with its immediate utility for ß-thalassemia and the mutation in hand, the approach can readily be adopted for analysis of alternative splicing or for quantitative assays of any disease-causing mutation that interferes with normal splicing.


Assuntos
Processamento Alternativo/genética , Mutação/genética , Globinas beta/genética , Talassemia beta/genética , Células Cultivadas , Humanos , RNA Mensageiro/genética
8.
J Clin Med ; 8(11)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717530

RESUMO

Haemoglobinopathies are common monogenic disorders with diverse clinical manifestations, partly attributed to the influence of modifier genes. Recent years have seen enormous growth in the amount of genetic data, instigating the need for ranking methods to identify candidate genes with strong modifying effects. Here, we present the first evidence-based gene ranking metric (IthaScore) for haemoglobinopathy-specific phenotypes by utilising curated data in the IthaGenes database. IthaScore successfully reflects current knowledge for well-established disease modifiers, while it can be dynamically updated with emerging evidence. Protein-protein interaction (PPI) network analysis and functional enrichment analysis were employed to identify new potential disease modifiers and to evaluate the biological profiles of selected phenotypes. The most relevant gene ontology (GO) and pathway gene annotations for (a) haemoglobin (Hb) F levels/Hb F response to hydroxyurea included urea cycle, arginine metabolism and vascular endothelial growth factor receptor (VEGFR) signalling, (b) response to iron chelators included xenobiotic metabolism and glucuronidation, and (c) stroke included cytokine signalling and inflammatory reactions. Our findings demonstrate the capacity of IthaGenes, together with dynamic gene ranking, to expand knowledge on the genetic and molecular basis of phenotypic variation in haemoglobinopathies and to identify additional candidate genes to potentially inform and improve diagnosis, prognosis and therapeutic management.

9.
Mol Diagn Ther ; 23(2): 201-222, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30945166

RESUMO

Rare diseases pose a global challenge, in that their collective impact on health systems is considerable, whereas their individually rare occurrence impedes research and development of efficient therapies. In consequence, patients and their families are often unable to find an expert for their affliction, let alone a cure. The tide is turning as pharmaceutical companies embrace gene therapy development and as serviceable tools for the repair of primary mutations separate the ability to create cures from underlying disease expertise. Whereas gene therapy by gene addition took decades to reach the clinic by incremental disease-specific refinements of vectors and methods, gene therapy by genome editing in its basic form merely requires certainty about the causative mutation. Suddenly we move from concept to trial in 3 years instead of 30: therapy development in the fast lane, with all the positive and negative implications of the phrase. Since their first application to eukaryotic cells in 2013, the proliferation and refinement in particular of tools based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) prokaryotic RNA-guided nucleases has prompted a landslide of therapy-development studies for rare diseases. An estimated thousands of orphan diseases are up for adoption, and legislative, entrepreneurial, and research initiatives may finally conspire to find many of them a good home. Here we summarize the most significant recent achievements and remaining hurdles in the application of CRISPR/Cas technology to rare diseases and take a glimpse at the exciting road ahead.


Assuntos
Sistemas CRISPR-Cas/genética , Doenças Genéticas Inatas/terapia , Doenças Raras/terapia , Terapia Genética , Humanos , Mutação/genética , Pesquisa Translacional Biomédica
12.
Hum Gene Ther Methods ; 29(1): 60-74, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29325430

RESUMO

The ß-hemoglobinopathies sickle cell anemia and ß-thalassemia are the focus of many gene-therapy studies. A key disease parameter is the abundance of globin chains because it indicates the level of anemia, likely toxicity of excess or aberrant globins, and therapeutic potential of induced or exogenous ß-like globins. Reversed-phase high-performance liquid chromatography (HPLC) allows versatile and inexpensive globin quantification, but commonly applied protocols suffer from long run times, high sample requirements, or inability to separate murine from human ß-globin chains. The latter point is problematic for in vivo studies with gene-addition vectors in murine disease models and mouse/human chimeras. This study demonstrates HPLC-based measurements of globin expression (1) after differentiation of the commonly applied human umbilical cord blood-derived erythroid progenitor-2 cell line, (2) in erythroid progeny of CD34+ cells for the analysis of clustered regularly interspaced short palindromic repeats/Cas9-mediated disruption of the globin regulator BCL11A, and (3) of transgenic mice holding the human ß-globin locus. At run times of 8 min for separation of murine and human ß-globin chains as well as of human γ-globin chains, and with routine measurement of globin-chain ratios for 12 nL of blood (tested for down to 0.75 nL) or of 300,000 in vitro differentiated cells, the methods presented here and any variant-specific adaptations thereof will greatly facilitate evaluation of novel therapy applications for ß-hemoglobinopathies.


Assuntos
Anemia Falciforme , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Vetores Genéticos , Globinas beta , gama-Globinas , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Anemia Falciforme/terapia , Animais , Linhagem Celular , Modelos Animais de Doenças , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Globinas beta/biossíntese , Globinas beta/genética , gama-Globinas/genética
13.
Cytotherapy ; 19(2): 311-326, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28088294

RESUMO

BACKGROUND AIMS: Primary hematopoietic stem and progenitor cells (HSPCs) are key components of cell-based therapies for blood disorders and are thus the authentic substrate for related research. We propose that ubiquitous small-volume diagnostic samples represent a readily available and as yet untapped resource of primary patient-derived cells for cell- and gene-therapy studies. METHODS: In the present study we compare isolation and storage methods for HSPCs from normal and thalassemic small-volume blood samples, considering genotype, density-gradient versus lysis-based cell isolation and cryostorage media with different serum contents. Downstream analyses include viability, recovery, differentiation in semi-solid media and performance in liquid cultures and viral transductions. RESULTS: We demonstrate that HSPCs isolated either by ammonium-chloride potassium (ACK)-based lysis or by gradient isolation are suitable for functional analyses in clonogenic assays, high-level HSPC expansion and efficient lentiviral transduction. For cryostorage of cells, gradient isolation is superior to ACK lysis, and cryostorage in freezing media containing 50% fetal bovine serum demonstrated good results across all tested criteria. For assays on freshly isolated cells, ACK lysis performed similar to, and for thalassemic samples better than, gradient isolation, at a fraction of the cost and hands-on time. All isolation and storage methods show considerable variation within sample groups, but this is particularly acute for density gradient isolation of thalassemic samples. DISCUSSION: This study demonstrates the suitability of small-volume blood samples for storage and preclinical studies, opening up the research field of HSPC and gene therapy to any blood diagnostic laboratory with corresponding bioethics approval for experimental use of surplus material.


Assuntos
Coleta de Amostras Sanguíneas/métodos , Coleta de Amostras Sanguíneas/normas , Separação Celular/métodos , Separação Celular/normas , Terapia Baseada em Transplante de Células e Tecidos/métodos , Leucócitos/patologia , Talassemia/sangue , Preservação de Sangue/métodos , Preservação de Sangue/normas , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Criopreservação , Estudos de Viabilidade , Congelamento , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Contagem de Leucócitos , Leucócitos/fisiologia , Testes Sorológicos , Talassemia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...