Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(8): e72748, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24133573

RESUMO

Patients with ovarian cancer (OC) may be treated with surgery, chemotherapy and/or radiation therapy, although none of these strategies are very effective. Several plant-based natural products/dietary supplements, including extracts from Emblicaofficinalis (Amla), have demonstrated potent anti-neoplastic properties. In this study we determined that Amla extract (AE) has anti-proliferative effects on OC cells under both in vitro and in vivo conditions. We also determined the anti-proliferative effects one of the components of AE, quercetin, on OC cells under in vitro conditions. AE did not induce apoptotic cell death, but did significantly increase the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. Quercetin also increased the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also significantly reduced the expression of several angiogenic genes, including hypoxia-inducible factor 1α (HIF-1α) in OVCAR3 cells. AE acted synergistically with cisplatin to reduce cell proliferation and increase expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also had anti-proliferative effects and induced the expression of the autophagic proteins beclin1 and LC3B-II in mouse xenograft tumors. Additionally, AE reduced endothelial cell antigen - CD31 positive blood vessels and HIF-1α expression in mouse xenograft tumors. Together, these studies indicate that AE inhibits OC cell growth both in vitro and in vivo possibly via inhibition of angiogenesis and activation of autophagy in OC. Thus AE may prove useful as an alternative or adjunct therapeutic approach in helping to fight OC.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neoplasias Ovarianas/patologia , Phyllanthus emblica/química , Extratos Vegetais/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neovascularização Patológica/genética , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/genética , Extratos Vegetais/uso terapêutico
2.
Genet Epidemiol ; 33(3): 217-27, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18924135

RESUMO

Genome-wide association (GWA) study is becoming a powerful tool in deciphering genetic basis of complex human diseases/traits. Currently, the univariate analysis is the most commonly used method to identify genes associated with a certain disease/phenotype under study. A major limitation with the univariate analysis is that it may not make use of the information of multiple correlated phenotypes, which are usually measured and collected in practical studies. The multivariate analysis has proven to be a powerful approach in linkage studies of complex diseases/traits, but it has received little attention in GWA. In this study, we aim to develop a bivariate analytical method for GWA study, which can be used for a complex situation in which continuous trait and a binary trait are measured under study. Based on the modified extended generalized estimating equation (EGEE) method we proposed herein, we assessed the performance of our bivariate analyses through extensive simulations as well as real data analyses. In the study, to develop an EGEE approach for bivariate genetic analyses, we combined two different generalized linear models corresponding to phenotypic variables using a seemingly unrelated regression model. The simulation results demonstrated that our EGEE-based bivariate analytical method outperforms univariate analyses in increasing statistical power under a variety of simulation scenarios. Notably, EGEE-based bivariate analyses have consistent advantages over univariate analyses whether or not there exists a phenotypic correlation between the two traits. Our study has practical importance, as one can always use multivariate analyses as a screening tool when multiple phenotypes are available, without extra costs of statistical power and false-positive rate. Analyses on empirical GWA data further affirm the advantages of our bivariate analytical method.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Humanos , Modelos Genéticos , Fenótipo
3.
PLoS Genet ; 3(3): e46, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17381242

RESUMO

In case-control studies, genetic associations for complex diseases may be probed either with single-locus tests or with haplotype-based tests. Although there are different views on the relative merits and preferences of the two test strategies, haplotype-based analyses are generally believed to be more powerful to detect genes with modest effects. However, a main drawback of haplotype-based association tests is the large number of distinct haplotypes, which increases the degrees of freedom for corresponding test statistics and thus reduces the statistical power. To decrease the degrees of freedom and enhance the efficiency and power of haplotype analysis, we propose an improved haplotype clustering method that is based on the haplotype cladistic analysis developed by Durrant et al. In our method, we attempt to combine the strengths of single-locus analysis and haplotype-based analysis into one single test framework. Novel in our method is that we develop a more informative haplotype similarity measurement by using p-values obtained from single-locus association tests to construct a measure of weight, which to some extent incorporates the information of disease outcomes. The weights are then used in computation of similarity measures to construct distance metrics between haplotype pairs in haplotype cladistic analysis. To assess our proposed new method, we performed simulation analyses to compare the relative performances of (1) conventional haplotype-based analysis using original haplotype, (2) single-locus allele-based analysis, (3) original haplotype cladistic analysis (CLADHC) by Durrant et al., and (4) our weighted haplotype cladistic analysis method, under different scenarios. Our weighted cladistic analysis method shows an increased statistical power and robustness, compared with the methods of haplotype cladistic analysis, single-locus test, and the traditional haplotype-based analyses. The real data analyses also show that our proposed method has practical significance in the human genetics field.


Assuntos
Alelos , Estudos de Casos e Controles , Haplótipos , Algoritmos , Artrite Reumatoide/genética , Teorema de Bayes , Análise por Conglomerados , Simulação por Computador , Reações Falso-Positivas , Frequência do Gene , Marcadores Genéticos , Variação Genética , Genoma Humano , Genótipo , Heterozigoto , Humanos , Funções Verossimilhança , Desequilíbrio de Ligação , Modelos Logísticos , Lectina de Ligação a Manose/genética , Cadeias de Markov , Modelos Genéticos , Método de Monte Carlo , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...